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Abstract As the scale of supercomputers grows, so does the size of the in-
terconnect network. Topology-aware task mapping, which maps parallel ap-
plication processes onto processors to reduce communication cost, becomes
increasingly important. Previous works mainly focus on the task mapping
between compute nodes (i.e., inter-node mapping), while ignoring the map-
ping within a node (i.e., intra-node mapping). In this paper, we propose a
hierarchical task mapping strategy, which performs both inter-node and intra-
node mapping. We consider supercomputers with popular fat-tree and torus
network topologies, and introduce two mapping algorithms: (1) a generic re-
cursive tree mapping algorithm, which can handle both inter-node mapping
and intra-node mapping; (2) a recursive bipartitioning mapping algorithm for
torus topology, which efficiently partitions the compute nodes according to
their coordinates. Moreover, a hierarchical task mapping library is developed.
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Experimental results show that the proposed approach significantly improves
the communication performance by up to 77% with low runtime overhead.

Keywords Topology-aware task mapping - hierarchical task mapping -
parallel applications - communication optimization - fat-tree network - torus
network

1 Introduction

In order to meet the ever increasing needs of scientific applications, high
performance computing (HPC) systems keep scaling up toward exascale by
integrating more compute nodes, each of which include increasing number
of processing cores. As the number of compute nodes increases, so does the
size of the interconnect network. Typically, closer processors can communicate
more efficiently. As many applications have sparse communication pattern, it
is therefore important to carefully map the application processes onto the HPC
system for the optimal communication performance. To achieve this goal, we
need to find a proper process-to-processor mapping by considering both the
physical topology of the HPC system and the communication pattern of the
application. This is commonly called topology-aware task mapping, or simply
topology mapping®.

Fat-trees and tori are two widely used network topologies in modern super-
computers, where fat-trees are often used to build large-scale clusters and tori
are typically deployed in massively parallel computers [Top(2014)]. A fat-tree
network uses switches to connect compute nodes into a tree structure [Leis-
erson(1985)]. The compute nodes are at the leaves, while intermediate nodes
represent switches. From the leaves to the root, the available bandwidth of links
increases, i.e., the links become “fatter”. Infiniband networks are representa-
tive examples of fat-tree topology [Subramoni et al(2012)Subramoni, Potluri,
Kandalla, Barth, Vienne, Keasler, Tomko, Schulz, Moody, and Panda]. An
n-dimensional torus network is a mesh with additional links to connect the
pair of nodes at the end of each physical dimension [Abts(2011)], so that the
network diameter can be reduced by half. For instance, 3-dimensional (3D)
torus is used in IBM Blue Gene/P machines and Cray XT5 systems.

From the application perspective, the communication pattern of an appli-
cation can be regular or irreqular. Typically, a regular pattern means that each
process has the same number of communicating neighbors (e.g., the 2D/3D
mesh/torus patterns are regular). Otherwise, the communication pattern is
considered to be irregular.

The topology-aware task mapping problem has been extensively studied
and proven to be NP-hard [Bokhari(1981), Hoefler and Snir(2011)]. Although
several physical optimization algorithms [Lee and Bic(1989), Chockalingam
and Arunkumar(1992), Berman and Snyder(1987),Salman et al(2002)Salman,

1 We use “task mapping” and “topology mapping” interchangeably.
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Fig. 1 Inter-node and intra-node communication in supercomputers.

Ahmad, and Al-Madani] have been explored, the research is limited to theo-
retical studies due to the long running time of these optimization algorithms.
Most practical studies target a specific network topology or even a particular
application communication pattern. Representative works include the graph
partitioning mapping scheme for hierarchical topology [Traff(2002)], the topol-
ogy detection method for fat-tree topology [Subramoni et al(2012)Subramoni,
Potluri, Kandalla, Barth, Vienne, Keasler, Tomko, Schulz, Moody, and Panda),
graph embedding schemes for mapping regular communication pattern onto
mesh/torus [Yu et al(2006)Yu, Chung, and Moreira], the mapping heuris-
tics introduced in [Bhatele(2010)] for mesh/torus, and so on. There are also

application-specific studies, such as [Bhatele and Kale(2008)] and [Wu et al(2012) Wu,

Lan, Xiong, Gnedin, and Kravtsov]. Unlike the above studies, Hoefler et al.
explored several generic topology-aware task mapping strategies for different
network topologies [Hoefler and Snir(2011)].

Modern machines commonly utilize a hierarchical design, where nodes are
linked via interconnect networks and each node contains several multi-core
sockets (see Fig. 1). The intra-node communication also show different per-
formance levels as shown by our experimental results in Section 5. However,
existing studies mainly focus on inter-node mapping with intra-node mapping
less studied. To the best of our knowledge, only the TreeMatch algorithm [Jean-
not and Mercier(2010)] is developed for intra-node mapping. Moreover, there
is few work on concurrent support of both inter-node mapping and intra-node
mapping.

In this paper, we propose to perform hierarchical task mapping for parallel
applications on supercomputers. Specifically, we consider HPC systems with
fat-tree and torus network topologies, and propose mapping strategies to per-
form inter-node mapping and intra-node mapping in a hierarchical manner.
The major contributions are as follows:

1. A generic methodology to perform hierarchical task mapping in two steps:
(1) optimize inter-node mapping by considering the network topology and
the inter-node communication pattern; (2) optimize intra-node mapping
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according to the physical topology of each compute node and the corre-
sponding intra-node communication pattern.

2. A generic recursive tree mapping algorithm is presented for both inter-
node and intra-node mapping. It uses a topology tree to represent the
hierarchy of the physical topology or the proximity of processors, and re-
cursively partitions the processes according to the tree in order to find a
proper mapping. More importantly, the algorithm is applicable for various
physical topologies, including fat-tree and torus which are two widely-used
interconnect network topologies in modern machines.

3. A recursive bipartitioning mapping algorithm is designed for task mapping
onto torus topology. It efficiently partitions the nodes according to their
coordinates in the torus network. As demonstrated by the experimental
results, its mapping quality can be comparable to that of the recursive tree
mapping algorithm for many cases, while it has much smaller mapping over-
head. More importantly, it can handle torus topology with non-contiguous
allocations, where the allocated nodes for a job are discrete in the torus
network.

4. A hierarchical task mapping library HierTopoMap [HTM(2014)] has been
developed for supercomputers with fat-tree and torus topologies. It inte-
grates the proposed algorithms to perform inter-node mapping and intra-
node mapping properly. This library has been tested on production super-
computers (including TACC Stampede [Sta(2014)], NICS Kraken [Kra(2013)]
and ALCF Intrepid [Int(2013)]) with a set of benchmarks and applications.
Results show that performing intra-node mapping after inter-node mapping
can further improve the communication performance, and the overhead for
intra-node mapping is negligible. Overall, the proposed mapping strategies
can find high quality mappings with low runtime overhead, which signifi-
cantly improves the communication performance by up to 77%.

The rest of this paper is organized as follows. Section 2 introduces the task
mapping problem and related works. Section 3 presents the proposed hierar-
chical task mapping strategy. Section 4 describes the design of the hierarchical
task mapping library. After experimental results are shown in Section 5, we
conclude the paper in Section 6.

2 Background
2.1 Problem Statement

The problem of mapping parallel application processes onto physical proces-
sors of HPC systems can be considered as a graph embedding problem [Aleli-
unas and Rosenberg(1982)]. Typically, the communication pattern of the ap-
plication is represented as a directed graph G = (Vig, Eg) (denoted as guest
graph), where Vg is the set of processes. Each edge (i,7) € E¢ has a weight
¢(i,j), which denotes the amount of communication (in bytes) from process
i to process j. Similarly, the physical topology of the computing platform is
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represented as an undirected graph H = (Vg, Fy) (denoted as host graph).
Each vertex in Vi often denotes a processor or a switch, and each edge in Fy
often represents a direct link (or the cost of communication). A mapping ¢
from processes Vg to processors in Vg is an embedding of the guest graph G
into the host graph H.

The quality of a mapping can be measured by several metrics, such as di-
lation, congestion [Hoefler and Snir(2011)], and hop-bytes [Bhatele(2010)]. In
practice, hop-bytes is often used as the evaluation metric, since it is relatively
easy to compute and typically correlated with the actual communication per-
formance. Specifically, hop-bytes represents the total traffic load of the inter-
connect network. It is the total amount of communication (in bytes) weighted
by the shortest path distance (in hops) between processors, i.e.,

hop-bytes(¢) = > i, )d(6(i), ¢(4)), (1)

v(i.j)€Lc

where d(¢(i),¢(j)) is the distance. Moreover, hop-bytes also indicates the
amount of energy required for data transmission.

The mapping problem is often defined as finding a mapping that mini-
mizes some evaluation metric in order to reduce the communication cost. In
general, finding the optimal mapping is NP-hard [Bokhari(1981), Hoefler and
Snir(2011)], and much work has been done to explore various solution tech-
niques.

2.2 Related Works

Previous works on topology mapping typically fall under two categories: (1)

physical optimization techniques, including simulated annealing [Lee and Bic(1989)],

genetic algorithm [Chockalingam and Arunkumar(1992)], graph contraction

[Berman and Snyder(1987)] and particle swarm optimization [Salman et al(2002)Salman,

Ahmad, and Al-Madani]; (2) heuristic approaches. Although physical opti-
mization algorithms can find high quality mappings, their computation cost
is often too high to enable efficient mapping at runtime. As a result, they are
limited to theoretical studies and rarely used in practice. In contrast, well-
designed heuristics can better exploit the structure of the network topology
and the characteristics of the communication pattern, and are capable of de-
riving good mappings cheaply, thus being more efficient for practical use.

The recursive bipartitioning algorithm is one of the representative heuris-
tics for topology mapping. It was initially proposed by Ercal et al. in [Ercal
et al(1988)Ercal, Ramanujam, and Sadayappan] for mapping processes onto
a hypercube topology, and extended to handle general topologies in [Pelle-
grini(1994)]. It has been implemented in the software package SCOTCH [pel-
legrini and Roman(1996)], and proven to be an effective approach in deriving
static mappings.
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For systems with a hierarchical communication architecture, e.g., clusters
of SMP nodes, Traff [Traff(2002)] proposed to use graph partitioning for find-
ing an appropriate mapping. For efficient topology mapping on InfiniBand
networks, Subramoni et al. [Subramoni et al(2012)Subramoni, Potluri, Kan-
dalla, Barth, Vienne, Keasler, Tomko, Schulz, Moody, and Panda] proposed
to detect the InfiniBand network topology by using the neighbor joining algo-
rithm.

Yu et al. [Yu et al(2006)Yu, Chung, and Moreira] exploited graph em-
bedding schemes to map regular 2D/3D communication pattern onto 2D /3D
mesh/torus topology, and developed a topology mapping library, which was
used on BG/L supercomputers to support MPI topology functions. Bhatelé
[Bhatele(2010)] developed MPI benchmarks to evaluate the effect of network
congestion on message latency, and proposed a set of heuristics for mapping
parallel applications onto regular mesh/torus.

Agarwal et al. [Agarwal et al(2006) Agarwal, Sharma, Laxmikant, and Kale]
proposed a greedy heuristic by using estimation functions which are used to
evaluate the effects of mapping decisions. Hoefler et al. developed a topology
mapping library LibTopoMap [Hoefler and Snir(2011), Lib(2011)], which in-
cluded a greedy heuristic, a recursive bipartitioning approach, and a mapping
strategy based on RCM ordering [Cuthill and McKee(1969)]. In order to solve
large-scale mapping problems efficiently, Chung et al. [Chung et al(2011)Chung,
Lee, Zhou, and Chung] proposed a hierarchical mapping algorithm to perform
mapping in a divide-and-conquer manner.

In addition to the aforementioned works on inter-node mapping, Jeannot
et al. [Jeannot and Mercier(2010)] proposed the TreeMatch algorithm for map-
ping processes onto cores within a multicore compute node, and this algorithm
was used in [Mercier and Jeannot(2011)] to support the MPI_Dist_graph_create
function.

Rashti et al. [Rashti et al(2011)Rashti, Green, Balaji, Afsahi, and Gropp]
proposed to use a weighted graph to model the whole physical topology of the
computing system, including both the inter-node topology and the intra-node
topology, and used the recursive bipartitioning algorithm in SCOTCH [pelle-
grini and Roman(1996)] to find a proper mapping. While this seems an effec-
tive approach to tackle inter-node and intra-node mapping for some physical
topologies, a weighted graph is not a proper representation of several physical
topologies in modern machines. For example, the InfiniBand network topol-
ogy and the intra-node topology can be better represented by topological trees
(without edge weights), and the topology of non-contiguous nodes allocated
to a user application on Cray XT5 machines cannot be effectively modeled by
a sparse weighted graph.

In summary, existing studies focus on inter-node mapping, and overlook
the mapping within a compute node. Generic mapping algorithms like recur-
sive bipartitioning [Pellegrini(1994), Hoefler and Snir(2011)] and greedy heuris-
tics [Agarwal et al(2006) Agarwal, Sharma, Laxmikant, and Kale, Hoefler and
Snir(2011)] can find good mappings, but they are likely to be outperformed
by other heuristics like graph partitioning [Subramoni et al(2012)Subramoni,
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Fig. 2 Flow of the proposed hierarchical task mapping strategy.

Potluri, Kandalla, Barth, Vienne, Keasler, Tomko, Schulz, Moody, and Panda]
(according to the fat-tree topology) and graph embedding [Yu et al(2006)Yu,
Chung, and Moreira] (on to regular mesh/torus), which are well-designed to
exploit the structure of specific mapping problems. Typically, a proper inter-
node mapping reduces the communication between nodes by placing heavily
communicating processes on the same compute node, leading to a large amount
of intra-node communication. Hence, it is important to optimize the intra-node
mapping, in addition to inter-node mapping. Although the TreeMatch algo-
rithm [Jeannot and Mercier(2010)] has been proposed as an effective heuristic
for intra-node mapping, to the best of our knowledge, there is little work on
concurrent support of both inter-node mapping and intra-node mapping.

3 Hierarchical Task Mapping Strategy

We consider mapping parallel application processes onto HPC systems with
multicore compute nodes (see Fig. 1), where each compute node is assigned
multiple MPI processes. The physical topology of the computing system con-
sists of two parts: network topology (i.e. inter-node topology) and intra-node
topology. As they have different characteristics, which can be exploited by
different mapping techniques, we propose to perform inter-node mapping and
intra-node mapping in two steps, so that the mapping can be better optimized.
At first, we perform inter-node mapping to reduce the amount of traffic in the
interconnect network. Second, we perform intra-node mapping to determine
the proper mapping of processes to processors for each compute node.
Specifically, for inter-node mapping, we target both fat-tree and torus
topologies. Note that torus topologies can be further divided into two cat-
egories: (1) those with contiguous allocation, e.g., IBM Blue Gene machines,
where a dedicated continuous partition of the system is allocated to each
job [Tang et al(2011)Tang, Lan, Desai, Buettner, and Yu]; (2) those with non-
contiguous allocation, e.g., Cray XT series, where discrete compute nodes are
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allocated to each job. For intra-node mapping, the topology can be repre-
sented as a tree, which models the intra-node hierarchy with leaves being logic
processors. We introduce a generic recursive tree mapping algorithm for both
inter-node and intra-node mapping. In addition, we also design an efficient
recursive bipartitioning mapping algorithm specifically for mesh/torus topol-
ogy. Fig. 2 summarizes the flow of the proposed hierarchical mapping strategy,
which naturally exploits the hierarchy of the computing system. The following
subsections present the details.

3.1 Inter-Node Mapping

The inter-node mapping problem can be formally stated as follows. Given
the network topology and the application communication pattern, which is
represented by the directed graph G = (Vg, FE¢), find a proper mapping of
processes onto compute nodes to reduce communication cost. Here, we assume
that the compute nodes are identical, and they are assigned the same number
of processes. This is common in HPC.

In order to achieve better mapping efficiency, we use a preprocessing step
before applying specific mapping strategies. The graph G = (Vi, E¢) is first
converted into an undirected graph, whose edge weight represents the total
communication volume between respective processes. Then the processes are
divided into equal-sized groups by partitioning the undirected communica-
tion graph. The number of process groups is equal to the number of compute
nodes, and each group of processes will be mapped onto a compute node. The
communication relation between these process groups can be represented as
an undirected graph G = (V, E), which will be used by mapping algorithms
discussed in the following subsections. As the multilevel k-way partitioning
scheme [Karypis and Kumar(1998)] computes the partition of a graph with
|E| edges in O(|E]) time, the time complexity of this preprocessing step is
O(|Eal).

3.1.1 Recursive Tree Mapping Algorithm

We adopt the neighbor joining algorithm [Subramoni et al(2012)Subramoni,
Potluri, Kandalla, Barth, Vienne, Keasler, Tomko, Schulz, Moody, and Panda|
to detect the fat-tree topology, and then recursively partition the communica-
tion graph G = (V, E) according to the hierarchy of the topology to derive a
proper mapping. More importantly, we extend this approach for task mapping
onto torus topology.

The neighbor joining algorithm constructs a tree topology based on the hop
distances between nodes by using an iterative procedure. In each iteration, it
identifies a group of nodes, which are closest to each other; joins this group
of nodes to create a new node; and computes the distances between the new
node and the remaining nodes. The joined nodes are connected with the new
node to form a tree structure (also called “neighbor joining tree”), and the
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Fig. 3 Neighbor joining for fat-tree and mesh/torus. The nodes allocated to the parallel
application are light green.

iteration terminates when all the nodes are “joined”. This algorithm has a
time complexity of O(n?), where n is the number of nodes.

As neighbor joining only relies on the distances between nodes, it can be
used as a generic approach for topology detection. In particular, it is well suited
for detecting logic tree topologies on non-contiguous allocation machines, such
as the InfiniBand based machine illustrated in Fig. 3 (a). It can also represent
the proximity relations of the compute nodes in torus networks as topology
trees (see Fig. 3 (b) and (c)). Each leaf of the neighbor joining tree represents
a compute node, and each non-leaf node denotes a group of compute nodes
that are leaves of the subtree rooted at itself.

As summarized by the recursive tree mapping algorithm in Fig. 4, the map-
ping can be obtained by partitioning the communication graph recursively to
match the compute node groups at each level from root to leaves, and the pro-
cesses are mapped onto the corresponding compute nodes. For each level, graph
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Algorithm 1 Recursive Tree Mapping
Input: communication graph G= (V, E),
topology tree T
Output: mapping ¢ : V — leaves of T.

tree,mapping(G, T)

if (root(T) is a leaf) {
¢ (i) = root(T),V process i € V;
return;
}
k = the number of children of root(T);
T; be the subtree rooted at the 7th child
of root(T);
9 // partition G into subgraphs G; = (Vi, E;),
10 // 1< i<k, where |V;| = the number of
11 // leaves of T;.
12 (él, @2, e ,CAT'k) — graph,partition(é);
13 fori=1tok{
14 tree,mapping(@i, TZ) ;
15 }
16 }

00 O Ui W N

Fig. 4 The recursive tree mapping algorithm.

partitioning minimizes the communication between compute node groups. As
a result, most communication would be between neighboring compute nodes
of the same group, leading to better communication performance.

Lemma 1 Given the inter-node communication graph G = (177 E), where |‘7|
is equal to the number of compute nodes, it takes O(|V'|?) time to build the

neighbor joining tree, and the time complexity of the recursive tree mapping
algorithm is O(|E|log [V]).

Proof The expected hight of the neighboring joining tree is O(log |I7|), and
the graph partitioning at each level takes O(|E|) time, thus Lemma 1 follows.

3.1.2 Recursive Bipartitioning Mapping Algorithm for Torus Topology

Although the recursive tree mapping algorithm can be applied for torus topol-
ogy, building the neighbor joining tree can be expensive as shown by the results
in Section 5.2.2. In order to take advantage of the geometric structure of torus
for efficient mapping, we propose to partition the set of nodes allocated to
the user application according to their coordinates, and design a recursive bi-
partitioning algorithm (see Fig. 5) for finding a proper mapping. Both the
communication graph and the set of compute nodes are bipartitioned recur-
sively until the mapping is derived. We partition the set of compute nodes
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Algorithm 2 Recursive Bipartitioning Mapping
Input: communication graph G= (17, E),
the set of compute nodes V.
Output: mapping ¢ : V — N
bipartitioning_mapping (G, \')

{
if (W] == 1) { )
(i) = N,V process i € V;
return;

}/ bipartition G into subgraphs G, = (\7;, Ez),
// i = 1,2; bipartition N into subsets N7,N3,
// such that [Vi| = |V1| and |Va| = |Nal.

(Gl, Gg) + graph_ blpartltlon(G)

(N1, N2) < node_bipartition(N);

12 bipartitioning_mapping (@ 1LM);

13 bipartitioning_mapping (ég ,N2);

14}

0O Ui Wi

©

— =
—= O

Fig. 5 The recursive bipartitioning mapping algorithm for inter-node mapping on torus
topology.
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@@@@ ----- Q@

e coeccepeos

@@@Q 06 @Q

(b) Mesh/Torus — contiguous allocation

Fig. 6 Recursive bipartitioning of mesh/torus topologies. The nodes allocated to the par-
allel application are light green.
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along their largest dimension, so that the compute nodes within the parti-
tioned subsets are close to each other. A bipartitioning example is shown in
Fig. 6. Note that for a set of compute nodes S, the sizes of their dimensions de-
pend on the coordinates of nodes, e.g., the size of the x-dimension is computed
as

max r; — minx; + 1,

= icS
where z; is the coordinate of node 1.

Lemma 2 Given the inter-node communication graph G = (‘7,@) and the
coordinates of allocated compute nodes, it takes O((|1A/| +|E|) log |‘7|) time to
find a proper mapping for torus topology by using the recursive bipartitioning
mapping algorithm.

Proof There are O(log |V|) levels of recursion calls, where |V| = |V| is the
number of compute nodes. The graph partitioning at each level can be done
in O(]E]|) time. Bipartitioning a set of n compute nodes according to their
coordinates is computationally equivalent to finding the median of n random
numbers. It can be done in expected O(n) time. Hence, the time complexity
of bipartitioning the sets of nodes at each level is O(|V|). It follows that the
time complexity of the whole recursive bipartitioning algorithm is O((|‘7| +

|E|)log |V]).

In fact, the recursive bipartitioning mapping algorithm can be viewed as a
special case of the recursive tree mapping algorithm, where the topology tree
is a binary tree obtained by recursively bipartitioning the compute nodes in a
top-down manner (the neighbor joining algorithm adaptively builds the topol-
ogy tree in a bottom-up manner). According to the proof of Lemma 2, for torus
topology, it takes O(|Y7| log |X7|) time to build such a binary topology tree by
partitioning the nodes according to their coordinates. This is more efficient
than using the neighbor joining algorithm to build the topology tree, which
takes O(|V|?) time. Hence, the overall mapping overhead of the recursive bi-
partitioning mapping algorithm would be smaller than that of the recursive
tree mapping algorithm. However, as the recursive bipartitioning mapping al-
gorithm only uses the coordinates for partitioning, it does not consider the
wrap-around links of torus topology, while the recursive tree mapping algo-
rithm can handle wrap-around links since it constructs the topology tree from
hop distances. Despite these differences, both algorithms tend to derive similar
mappings for torus topology with continuous allocation as shown by the exam-
ple in Fig. 3 (c) and Fig. 6 (b). These two mapping algorithms are compared
in Section 5.

3.2 Intra-Node Mapping

After the inter-node mapping procedure is done, the processes to be mapped
onto each compute node are determined. For each compute node, an undirected
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Fig. 7 A node architecture and its corresponding topology tree.

graph G = (YN/, E‘) can be constructed to represent the communication pattern
between the processes (to be mapped onto it), and then used for intra-node
mapping.

The Portable Hardware Locality (hwloc) library [Broquedis et al(2010)Broquedis,

Clet-Ortega, Moreaud, Furmento, Goglin, Mercier, Thibault, and Namyst] de-
tects the architectural components of compute nodes, including NUMA mem-
ory nodes, processor sockets, cores, processing units (PU, i.e. logical processors
or “threads”), etc. The hierarchical topology of the architecture is represented
as a tree, whose leaves are processing units as shown in Fig. 7. Each non-leaf
node represents a group of processing units, which are leaves of the subtree
rooted at the non-leaf node itself.

In order to take advantage of the hierarchical architecture, we propose to
apply the recursive tree mapping algorithm (see Fig. 4) to find a proper map-
ping by using the communication graph G and the intra-node topology tree.
The heavily communicating processes are mapped onto neighboring processing
units for efficient communication. In particular, the mapping is derived in a
top-down manner, which is different from the bottom-up TreeMatch algorithm
proposed in [Jeannot and Mercier(2010)]. More importantly, this top-down
strategy enables us to better optimize the mapping globally. To the best of
our knowledge, this is the first time that the recursive tree mapping algorithm
is utilized for intra-node mapping.

Lemma 3 Given the intra-node communication graph G = (‘7,177) and the
intra-node topology tree, it takes O(|E|log|V]) time to find a proper intra-

node mapping by using the recursive tree mapping algorithm.

Proof Lemma 3 follows from Lemma 1.

4 HierTopoMap: Hierarchical Task Mapping Library

We have implemented the proposed mapping algorithms into a user-level li-
brary called HierTopoMap. It is written in C++, and the source is available
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Fig. 8 Overview of our HierTopoMap library for hierarchical task mapping of parallel
applications.

at [HTM(2014)]. It has about 4K lines of code excluding external libraries. Cur-
rently, HierTopoMap supports InfiniBand-connected supercomputers (i.e., fat-
tree topology), Cray XT5 machines (i.e., torus topology with non-contiguous
allocation), and IBM Blue Gene/P systems (i.e. torus topology with contigu-
ous allocation). For InfiniBand network, it utilizes the topology query service
to get the distance between compute nodes. On Cray XT5 and IBM Blue
Gene/P machines, it uses the machine specific topology query libraries to
get the network topology. For intra-node mapping, our library utilizes the
Portable Hardware Locality (hwloc) library [Broquedis et al(2010)Broquedis,
Clet-Ortega, Moreaud, Furmento, Goglin, Mercier, Thibault, and Namyst] to
detect the intra-node tree topology.

Fig. 8 presents the overall topology mapping framework and the flow of
our hierarchical task mapping library. Our library accepts an MPI Dist graph
communicator [MPI(2012)] as input, and computes an optimized mapping,
i.e., a rank reordering. It can be used to support MPI topology functions. The
major APIs are

— int HTM_Topomap(MPI_Comm distgr, int *newrank) ;
The generic API for hierarchical task mapping. By default, it uses the recur-
sive tree mapping algorithm for inter-node mapping on fat-tree topology,
and the recursive bipartitioning mapping algorithm for inter-node mapping
on torus topology.

— int HTM_Topomap-tree(MPI_Comm distgr, int *newrank);
This API performs hierarchical task mapping with the recursive tree map-
ping algorithm for inter-node mapping.

— int HTM_Topomap_bipart(MPI_Comm distgr, int *newrank); This API
performs hierarchical task mapping with the recursive bipartitioning map-
ping algorithm for inter-node mapping. It is only applicable for torus topol-

ogy.



O©CoO~NOOOITA~AWNPE

Hierarchical Task Mapping for Parallel Applications on Supercomputers 15

Table 1 Experimental Platforms

Production TACC Stampede NICS Kraken ALCF Intrepid
Supercompuer [Sta(2014)] [Kra(2013)] [Int(2013)]
System Dell Linux Cluster | Cray XT5 IBM Blue Gene/P
Number of Cores 462,462 112,896 163,840

3D Torus (non- 3D Torus (contiguous
Network Topology Z-level Fat-Tree Contiguous( allocation) allocation)( ®
Processor(s) 2 eight-core 2 six-core 1 quad-core
per Node Xeon E5 AMD Opteron PowerPC
Processor Frequency 2.7 GHz 2.6 GHz 850 MHz
Memory per Node 32 GB 16 GB 2 GB
Ranking in Top500
list (Juie 201313 Gth 30th 58th

Specifically, our library extracts the communication graph from the MPI
Dist graph communicator, and uses a graph partitioner to build the inter-
node communication graph. Then inter-node mapping and intra-node map-
ping are performed sequentially. Note that each compute node performs intra-
node mapping for itself, respectively. The graph partitioning tool METIS
[MET(2013)] is employed to partition the communication graphs. As the par-
titioning returned by METIS may be imbalanced, we correct the imbalanced
partitioning by greedily moving vertices from overloaded partitions to under-
loaded partitions. The correction step moves the node, which results in the
minimum overall edgecut after movement.

5 Experiments

In this section, we evaluate the performance of the proposed hierarchical map-
ping strategy on production supercomputers by using a set of benchmarks and
applications.

5.1 Experimental Setup
5.1.1 Experimental Platforms

Experiments are carried out on three production machines: Stampede at TACC
[Sta(2014)], Kraken at NICS [Kra(2013)], and Intrepid at Argonne Leadership
Computing Facility [Int(2013)]. Stampede is a Dell Linux cluster intercon-
nected by Mellanox FDR InfiniBand network in a two-level fat-tree topology.
It has 6,400+ Dell PowerEdge server nodes, each of which has two eight-core
Xeon E5 processors. Kraken is a Cray XT5 system with a 3D torus network
topology. It is comprised of 9,408 compute nodes and each node contains two
six-core AMD Opteron processors. Intrepid is an IBM Blue Gene/P (BG/P)
system with a 3D torus network for point-to-point message passing. It consists
of 40 racks with 1024 nodes per rack. Each node is equipped with a quad-core
PowerPC processor. The peak performance of these chosen supercomputers
ranked 6th, 30th, and 58th in the topo500 list (June 2013) [Top(2014)], re-
spectively. Table 1 lists the major system specifications of these machines. It
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Table 2 Properties of the Test Suite

Test Case | Comm. Pattern | Application Problem

3D Stencil | regular Computation on a regular 3D mesh
F1 irregular Matrix computation for solving the
audikw_1 irregular elasticities of automotive crankshafts

Matrix computation for a 3D PDE-
constrained optimization problem
Cosmology simulation on a 3D
structured adaptive mesh

nlpkkt120 | irregular

ART irregular

is to be noted that Kraken and Intrepid have different node allocation strate-
gies. The nodes allocated to a parallel application on Cray XT5 systems may
be discrete in the 3D torus network, while IBM Blue Gene machines allocate
compute nodes interconnected by a regular 3D mesh/torus network to each
job2.

5.1.2 Test Suite

Our test suite consists of five benchmarks and/or applications, each repre-
senting different application communication patterns. Our first test case is
a 3D stencil benchmark. The processes are mapped onto a 3D grid, and
each process communicates with its immediate neighbors in each dimension.
The inter-process communication is implemented by posting non-blocking re-
ceives MPI Irecv() and non-blocking sends MPI Isend(), followed by a single
MPI_Waitall() for all sends and receives.

We also use three sparse matrices from the University of Florida Sparse
Matrix Collection [Davis and Hu(2011)] as our test cases. They are F1, au-
dikw_1 and nlpkkt120. The first two matrices are symmetric stiffness matri-
ces, which model the elasticities of automotive crankshafts. The third one is a
symmetric indefinite KKT matrix, which represents a nonlinear programming
problem for a 3D PDE-constrained optimization. In order to perform matrix
computation efficiently, scientific codes often use a graph partitioner to decom-
pose the matrix into sub-matrices, and then use multiple processes/threads to
compute in parallel. The communication between processes depends on the
decomposition and the structure of the matrix. In our experiments, we use
METIS [MET(2013)] to partition the sparse matrices, and analyze the inter-
process communication pattern, which is then utilized for communication tests.

In addition, we experimented with a real cosmology simulation code called
Adaptive Refinement Tree (ART) [Kravtsov et al(1997)Kravtsov, Klypin, and
Khokhlov, Wu et al(2011)Wu, Gonzalez, Lan, Gnedin, Kravtsov, Rudd, and
Yu,Yu et al(2012)Yu, Rudd, Lan, Gnedin, Kravtsov, and Wu]. The application
uses a cubic computational domain to model the universe, and employs adap-
tive mesh refinement (AMR) [Plewa et al(2005)Plewa, Linde, and Weirs] for

2 On Blue Gene/P systems, if the number of allocated nodes is less than 512, then their
network topology is a mesh.
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Fig. 9 The communication pattern of the test suite (1024 processes).

efficient computation. The computational domain is divided into many cells,
which are refined and de-refined dynamically during simulation. Each process
performs simulation for a local computational domain, and communicates with
other processes to exchange updated boundary information. The communica-
tion is mainly nearest-neighbor exchanges, which are representative of many
scientific applications. As ART simulations consume a large amount of com-
puting resources, we extract the communication part of a production ART
simulation for performance tests.

Table 2 summarizes the properties of our test suite, and Fig. 9 shows
the communication pattern of these test cases on 1024 processes. Each blue
dot at (7,7) denotes the communication between processes ¢ and j, and “nz”
is the total number of blue dots. The 3D stencil benchmark has a regular
communication pattern, while the three matrix tests show highly irregular
communication. Most communication of ART is between neighboring processes
as shown by its sparse and diagonally dominant pattern.

5.1.3 Mapping Mechanisms

The following mapping mechanisms are evaluated:

1. The system default mapping, which is topology-agnostic;
2. The pure inter-node mapping by using the recursive tree (RT) mapping
algorithm shown in Fig. 4, denoted by “RT:inter”;
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Table 3 Mapping Mechanisms Tested on Each Machine

Machine Stampede | Kraken | Intrepid
system default Yes Yes Yes
RT:inter Yes Yes Yes
RT:inter+intra Yes Yes No
RB:inter No Yes Yes
RB:inter+intra No Yes No
LibTopoMap [Lib(2011)] No No Yes

@

“RT:inter” + intra-node mapping, denoted by “RT:inter+intra”;

4. The pure inter-node mapping by using the recursive bipartitioning (RB)
mapping algorithm shown in Fig. 5, denoted by “RB:inter”;

5. “RB:inter” + intra-node mapping, denoted by “RB:inter+intra”.

As the proposed recursive bipartitioning (RB) mapping algorithm is not
applicable for fat-tree topology, we only evaluate the first three mechanisms on
Stampede, while all of these mechanisms are tested on Kraken. Intrepid does
not have a hierarchical intra-node topology, so we do not perform intra-node
mapping on it.

Furthermore, we compare the above mapping mechanisms with the generic
topology mapping library libTopoMap [Hoefler and Snir(2011),Lib(2011)]. Un-
fortunately, we do not have the root permission to obtain the physical inter-
connect topology of Stampede, which is required by LibTopoMap for topology
mapping, and LibTopoMap cannot handle the topology mapping on Kraken
due to the non-contiguous node allocation. Hence, we only experimented with
LibTopoMap on Intrepid. Table 3 summarizes the experiments conducted on
these production machines. Hop-bytes and communication time are employed
as the evaluation metrics.

5.1.4 Execution Setups

In all the experiments, we assign an MPI process on each core, and run jobs in
production mode without dedicated nodes, i.e. there are other users sharing
the interconnection network (on Stampede and Kraken). It is to be noted
that different runs often get different compute nodes, and the interference
of other running applications may also be different (especially for Stampede
and Kraken). To fairly compare the mapping mechanisms, for each set of
experiments with a particular number of processes, we run all the tests with
different mapping mechanisms in a single batch script.

5.2 Results

Before we show the experimental results to evaluate our hierarchical task
mapping schemes, we first present the average intra-socket and inter-socket
PingPing communication times on Stampede and Kraken (see Table 4). The
table clearly shows that the intra-socket communication is faster than the
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Table 4 Average Intra-Socket and Inter-Socket Communication Time (PingPing)

L Stampede (us Kraken (us
’ #bytes | gfrepetitions } Intra. | Intzr. [(dif)ference % Intra. [ Inter. % d)ifference %
0 1000 0.51 0.69 35.33% 0.56 0.81 43.38%
1 1000 0.53 0.73 38.40% 0.58 0.74 27.57%
2 1000 0.52 0.73 38.96% 0.59 0.74 26.96%
4 1000 0.52 0.73 39.14% 0.60 0.75 25.26%
8 1000 0.52 0.71 37.44% 0.62 0.74 20.89%
16 1000 0.52 0.75 42.35% 0.61 0.75 21.90%
32 1000 0.53 0.77 44.84% 0.64 0.83 28.95%
64 1000 0.54 0.79 47.54% 0.65 0.84 30.43%
128 1000 0.55 0.86 55.91% 1.09 1.31 20.06%
256 1000 0.59 1.03 73.17% 1.16 1.39 19.82%
512 1000 0.64 1.15 79.36% 1.37 1.64 19.84%
1024 1000 0.73 1.34 82.42% 1.75 2.08 19.19%
2048 1000 0.92 1.68 83.29% 2.57 3.02 17.77%
4096 1000 1.31 2.27 73.08% 4.39 5.17 17.76%
8192 1000 3.13 3.87 23.74% 7.30 8.87 21.45%
16384 1000 3.88 4.61 18.89% 14.64 16.95 15.76%
32768 1000 5.10 5.89 15.34% 27.86 32.63 17.13%
65536 640 7.67 8.50 10.78% 53.92 64.14 18.94%
131072 320 13.68 14.62 6.85% 36.74 38.11 3.74%
262144 160 28.47 29.27 2.83% 71.09 71.76 0.93%

inter-socket communication. For small- and medium-sized messages, as the
communication time is relatively small, the performance gap is significant. In
other words, the table demonstrates the necessity to consider the performance
gap between intra-socket and inter-socket and perform intra-node mapping for
communication optimization on production systems.

5.2.1 Comparison of Mapping Mechanisms

To demonstrate the performance of mapping mechanisms, our results are struc-
tured to answer the following questions:

(1): For fat-tree topology, how much performance gain can we achieve by
using the recursive tree mapping algorithm for inter-node mapping? How much
additional performance improvement can we get by performing both inter-node
mapping and intra-node mapping?

As shown in Fig. 10, on Stampede, the inter-node mapping with the re-
cursive tree mapping algorithm significantly reduces hop-bytes by up to 90%,
and reduces the communication time by up to 76%. By performing inter-node
mapping and intra-node mapping in a hierarchical manner, we can further im-
prove the communication performance for many cases. In the best case (“F1”
test with 32 processes), the additional performance gain of intra-node map-
ping is up to 22%. For ART and the sparse matrix tests, as the number of
processes increases, the performance gain of task mapping tends to decrease.
That’s because we fixed the original application problem sizes. When more
processes are used, the inter-process message sizes would become smaller, and
the fat-tree network tends to be less congested.

(2): For torus topology with non-contiguous allocation, we can use the re-
cursive tree mapping algorithm or the recursive bipartitioning mapping algo-
rithm for inter-node mapping. Which algorithm provides better performance?
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Fig. 10 Performance gain of topology mapping (relative to the system default mapping)
on Stampede — fat-tree topology.

How much performance gain can we achieve? How much additional perfor-
mance improvement can we get by performing both inter-node mapping and
intra-node mapping?

Fig. 11 presents the performance test results on Kraken. As the perfor-
mance of “RB:inter+intra” is similar to that of “RT:inter+intra”, it is omitted
in the figure for succinct presentation. The recursive tree mapping algorithm
typically achieves more hop-bytes reduction than the recursive bipartitioning
mapping algorithm, since it considers the wrap-around links by using the hop
distances to construct the topology tree, while the recursive bipartitioning
mapping algorithm ignores the wrap-around links. However, these two algo-
rithms lead to similar communication time reduction on average. Overall, the
hop-bytes reduction is up to 89%, and the communication time reduction is up
to 77%. The intra-node mapping step achieves up to 23% additional commu-
nication time reduction (the best case is “3D stencil” test with 96 processes).

(8): For torus topology with contiguous allocation, we can also use the
recursive tree mapping algorithm or the recursive bipartitioning mapping algo-
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Fig. 11 Performance gain of topology mapping (relative to the system default mapping)
on Kraken — 3D torus topology with non-contiguous allocation.

rithm for inter-node mapping. Which algorithm provides better performance?
How much performance gain can we achieve?

Fig. 12 shows the performance results on Intrepid. “Greedy”, “Recur-
sive” and “RCM” represent the three mapping mechanisms of LibTopMap
[Lib(2011)]: a greedy heuristic, a recursive bipartitioning algorithm, and an
RCM ordering-based approach. Note that the recursive bipartitioning algo-
rithm of LibTopMap partitions the topology graph with a graph partitioner,
while our recursive bipartitioning mapping algorithm partitions the compute
nodes according to their coordinates. Moreover, LibTopMap aims to minimize
the network congestion, which represents the worst-case contention among all
links in the network. It uses a heuristic to compute the congestion in order to
evaluate the quality of a mapping, and returns an optimized mapping with re-
duced congestion if such a mapping is found. In our experiments, LibTopMap
failed to derive optimized mappings for some test cases, so the corresponding
performance gain is 0 (i.e., no bar is shown).

Clearly, both the recursive tree mapping algorithm and the recursive bipar-
titioning mapping algorithm achieve similar hop-bytes reduction, and they also
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Fig. 12 Performance gain of topology mapping (relative to the system default mapping)
on Intrepid — 3D torus topology with contiguous allocation.

achieve similar communication time reduction for most test cases. This con-
firms the observation (from Fig. 3 (c¢) and Fig. 6 (b)) that these two algorithms
provide similar mappings for torus topology with contiguous allocation. More
importantly, both mapping algorithms significantly outperform LibTopMap,
achieving hop-bytes reduction by up to 79% and communication time reduc-
tion by up to 69%. As the number of processes increases, the performance gain
of our mapping algorithms tends to increase for sparse matrix tests, indicating
the importance of task mapping at large-scale.

Although LibTopMap can reduce the congestion for many test cases, it may
increase the communication cost, and can only achieve minor performance gain
in the best case. This is due to the fact that congestion is an indirect measure of
the communication time. It represents the data transmission time of the most
congested link. However, the actual communication time is more likely to be
dependent on the aggregate congestion of multiple links, which is equivalent
to hop-bytes if we sum up the congestion of all links (assume that the links
have identical bandwidth).
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Table 5 Mapping Overhead on Stampede — Fat-Tree Topology (Time in Seconds)

[ Number of Processes [ 256 [ 512 ] 1024 [ 2048 [ 4096 [ 8192 |
Build Topology Tree | 0.000 | 0.001 | 0.001 | 0.007 | 0.008 | 0.032
Preprocessing 0.003 0.005 0.024 | 0.030 | 0.120 0.261

RT:inter+intra | Inter-Node Mapping 0.000 0.001 0.001 0.002 0.005 0.029
Intra-Node Mapping 0.000 0.000 0.000 0.001 0.002 0.002
Total 0.003 | 0.007 | 0.027 | 0.040 | 0.135 | 0.324

Table 6 Mapping Overhead on Kraken — 3D Torus Topology with Non-Contiguous Allo-
cation (Time in Seconds)

[ Number of Processes [ 192 [ 384 [ 768 [ 1536 [ 3072 [ 6144 ]
Build Topology Tree | 0.000 | 0.001 0.003 0.011 0.042 0.180
Preprocessing 0.006 0.012 0.022 0.053 0.088 0.192

RT:inter+intra Inter-Node Mapping 0.001 0.002 0.012 0.012 0.021 0.045
Intra-Node Mapping | 0.001 | 0.001 0.007 | 0.005 | 0.001 0.007
Total 0.008 | 0.0I6 | 0.044 | 0.081 0.152 | 0.425
Preprocessing 0.006 | 0.013 | 0.026 | 0.046 | 0.102 | 0.198
Inter-Node Mapping 0.001 0.002 0.005 0.021 0.043 0.054
Intra-Node Mapping 0.001 0.001 0.002 0.003 0.004 0.007
Total 0.008 | 0.016 | 0.033 | 0.070 | 0.149 | 0.259

RB:inter+intra

Table 7 Mapping Overhead on Intrepid — 3D Torus Topology with Contiguous Allocation
(Time in Seconds)

[ Number of Processes [ 256 [ 512 [ 1024 [ 2048 [ 4096 [ 8192 ]
Build Topology Tree 0.040 0.155 0.608 2.438 9.724 38.738
RT:inter Preprocessing 0.079 0.167 0.351 0.732 1.536 3.229
' Inter-Node Mapping 0.051 0.120 0.277 0.634 1.424 3.175
Total 0.170 0.442 1.236 3.804 12.683 45.143
Preprocessing 0.082 0.174 0.366 0.763 1.596 3.354
RB:inter Inter-Node Mapping 0.071 0.162 0.364 0.824 1.828 4.014
Total 0.153 0.336 0.730 1.586 3.424 7.368
greedy 0.096 0.380 1.525 NA NA NA
LibTopoMap recursive 12.324 | 36.736 133.052 NA NA NA
rcm 0.005 0.012 0.028 NA NA NA

5.2.2 Mapping Overhead

Mapping overhead is another important part of performance comparison. Ta~
bles 5 to 7 list the mapping overhead for the sparse matrix test “nlpkkt120” on
Stampede, Kraken and Intrepid, respectively. The mapping overhead for other
test cases is similar. We report the cost for each step of the hierarchical task
mapping strategy, and explicitly list the execution time to build the inter-node
topology tree by using the neighbor joining algorithm.

On Stampede, the neighbor joining algorithm efficiently builds the inter-
node topology tree with low cost, and most of the mapping overhead is due
to the preprocessing stage, which partitions the original communication graph
into number of nodes parts, and builds the inter-node communication graph.
The inter-node mapping stage is fairly efficient, and the cost for intra-node
mapping is negligible.

On Kraken, the neighbor joining algorithm takes more execution time to
build the inter-node topology tree, since it needs more iterations to construct
the binary tree representation of torus topology than to detect fat-tree topol-
ogy. The cost for preprocessing, inter-node mapping and intra-node mapping
is similar to that of Stampede (consider the difference in their CPU perfor-
mance). Most mapping overhead is due to preprocessing and building the
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inter-node topology tree. Specifically, the recursive tree mapping algorithm
has larger overhead than the recursive bipartitioning mapping algorithm. This
is attributable to the fact that building the inter-node topology tree is more
expensive than recursively bipartitioning the compute nodes according to their
coordinates. As the number of processes increases, it is observed that the ex-
ecution time for intra-node mapping may increase because of the cost for
building the intra-node communication graph.

On Intrepid, the mapping overhead is much larger than that of Stampede
and Kraken due to the relatively low processing power of its CPU and the small
amount memory per core. As the cost for building the inter-node topology tree
dominates the mapping overhead, the recursive tree mapping algorithm is more
costly than the recursive bipartitioning mapping algorithm. Table 7 also lists
the execution time of LibTopMap for comparison 3. The mapping overhead of
our algorithms is comparable to that of the greedy heuristic of LibTopMap.

5.2.83 Result Summary

In general, for compute nodes with a hierarchical architecture, performing
intra-node mapping after the inter-node mapping stage can achieve better
communication performance. As the number of processes per node is small,
the overhead for intra-node mapping is negligible. Consider that more and
more CPU cores are put on a compute node, the intra-node topology mapping
will become increasingly important.

The recursive tree mapping algorithm is highly efficient for inter-node map-
ping onto fat-tree topology and intra-node mapping, and it can also be ap-
plied for inter-node mapping onto torus topology. Our recursive bipartitioning
mapping algorithm efficiently partitions the compute nodes in torus topology
according to their coordinates. Its mapping overhead is smaller than that of
the recursive bipartitioning algorithm while achieving comparable communi-
cation performance. Consider that communication-intensive applications often
have substantial amount of communication time, e.g., the ART code spends
up to several hundreds of seconds on inter-process communication for simulat-
ing a single time step, the mapping overhead of our mapping mechanisms is
relatively small compared to the reduction in communication time, and thus
being suitable for practical use.

6 Conclusion

In this paper, we have presented a hierarchical task mapping strategy for mod-
ern supercomputers. It finds a proper mapping of processes onto processors
by performing inter-node mapping and intra-node mapping in a hierarchi-
cal manner. Moreover, we have introduced a generic recursive tree mapping
algorithm for inter-node mapping and intra-node mapping, and designed a

3 LibTopMap failed to derive mapping solutions when the number of processes is larger
than 1024.
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recursive bipartitioning mapping algorithm for torus topology. The proposed
mapping algorithms have been implemented in a hierarchical task mapping li-
brary, which supports fat-tree and torus network topologies. Our experiments
with a set of benchmarks/applications on three production systems show that
our design can effectively reduce communication cost with very low runtime
overhead. For inter-node mapping, the recursive tree mapping is suitable for
fat-tree topology, while the recursive bipartitioning mapping algorithm is more
practical for torus topology due to its low overhead. In addition, performing
intra-node mapping can further improve the communication performance.

In future, we plan to extend to the proposed mapping algorithms to handle
more complex networks such as 5D Torus, and to extend the hierarchical task
mapping library to support more platforms.
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