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Abstract—The high performance computing landscape is filled
with diverse hardware components. A large part of understand-
ing how these components compare to others is by looking
at the various environmental aspects of these devices such as
power consumption, temperature, etc. Thankfully, vendors of
these various pieces of hardware have supported this by providing
mechanisms to obtain this data. However, differences not only in
the way this data is obtained but also the data which is provided
is common between products.

In this paper, we take a comprehensive look at the data which is
available for the most common pieces of today’s HPC landscape,
as well as how this data is obtained and how accurate it is.
Having surveyed these components, we compare and contrast
them noting key differences as well as providing insight into
what features future components should have.

Index Terms—Environmental Data, Power Profiling, Blue
Gene/Q, Intel Xeon Phi, NVML, RAPL

I. INTRODUCTION

In recent years, supercomputers have become more het-
erogeneous and now commonly employ acceleration devices
to help with several aspects of the computation. As systems
become larger and more complex, it becomes increasingly
difficult to get an accurate picture of what the “environmental”
aspects (e.g., motherboard, CPU, GPU, hard disk and other
peripherals’ temperature, voltage, current, fan speed, etc.) of
the system are like with any decent accuracy. Putting accurate
sensors in hardware is an expensive proposition, therefore
hardware manufacturers do so sparingly and only where really
necessary primarily for diagnostic purposes. What’s more,
there is a distinct lack of tools available to access and interpret
this data across a variety of systems. As a result, data like
power consumption, temperature, etc. are some metrics which
are largely not understood on a system level.

A Supercomputing 2011 State of the Practice Report [1]
highlighted a number of difficulties in the monitoring of
large systems and provided some insight into what would
alleviate those difficulties. Two of these suggestions are of
particular interest to this paper. First, better power monitoring
and control is going to be critical as we move to exascale.
This includes accurate power consumption and control at the
sub-system level (CPU, RAM, NIC, etc.). Secondly, there
needs to be standard interfaces to monitoring data. If there
were better out of the box monitoring and a standard that

vendors could work against for exposing the monitoring data,
we could largely eliminate effort expended in that area and
focus on higher level tools that turn that into useful, actionable
information.

Once obtained, this information is useful in a number of
ways which have already shown promising results. In our own
previous work previous work [2] we proposed a power aware
scheduling design which using power data from IBM Blue
Gene/Q resulted in savings of up to 23% on the electricity
bill.

Clearly then, it is important not only that this data be
available, but also relatively easy to gather. To this end, we
seek to investigate just what data is currently available and
what the process of collecting it is like. Further, we seek
to provide insight into what we think future generations of
hardware should look like in terms of environmental data
collection.

The majority of this paper will deal with discussions about
“environmental” data. As will be discussed, most platforms
today support power collection at some level, however we do
not want to focus on power collection alone. As such, we
will also discuss what mechanisms are in place for collection
of data other than power consumption. More specifically, we
provide the following contributions:

• We discuss and analyze the obtainable data from four
major hardware platforms common in HPC today. With
each we discuss what the procedure to obtain the data
are, how reliable the data are, what frequency the data
can be reliably obtained, and show what this data looks
like for some benchmarks.

• We discuss our power profiling library, MonEQ, which
we extended in this work to support all of the data
access mechanisms discussed throughout this paper. We
show that with as few as two lines of code on any of
the hardware platforms mentioned in this paper one can
easily obtain environmental data for analysis.

The remainder of this paper is as follows: we will introduce
the problem of environmental data collection in Section II
which will include detailed analysis of four popular platforms;
the Blue Gene/Q, Intel’s RAPL interface, NVIDIA GPUs via
the NVIDIA Management Library, and finally the Intel Xeon
Phi. We will discuss the power profiling library, MonEQ,



which we developed to obtain these results in Section III.
Finally, we will provide our conclusions and discussion of
future systems in Section IV.

II. VENDOR SUPPLIED APIS

Power measurement and therefore analysis would not be
possible without sensors deployed in hardware. From the CPU
in a node of a supercomputer to the memory on an accelerator,
there must be sensors present to gather meaningful data.
The presence of these sensors alone however is not enough,
hardware manufacturers must provide end users the ability to
gather the information which these sensors gather. Fortunately,
every major hardware manufacturer does provide access to
this data in one way or another. Most commonly, this is done
through access to an exposed low-level API. However, this is
certainly not the only way. Some systems, such as the Intel
Xeon Phi, employ a daemon approach where a process takes
care of the data gathering and the actual collection is done by
reading a pseudo-file mounted on a virtual file system. Other
systems, such as Intel processors, have neither a daemon nor
an API and instead expose direct access to the registers which
hold environmental data through kernel drivers. Clearly then,
there is hardly a uniform method of access.

Aside from the collection process, the exact location of
these sensors is what determines what data can be gathered.
Obviously, going so far as to put sensors in the processor
registers would be too costly and likely overkill. On the other
hand, putting only a single sensor on the CPU die would be
inexpensive, however only represent one small portion of the
system on the whole. As far as devices currently available,
there is a wide variety in location, count, sampling frequency,
as well as other aspects. Said another way, in certain cases,
it’s not possible to gather the exact same type of data between
two devices, or, it is possible to collect the same data, but
the collection frequency is different. While it’s clear that
the differences in devices today warrants speculation of a
head-to-head comparison, there are certain situations where
it would be beneficial to look at two devices in terms of their
environmental data. An overview of the various sensors present
on the devices being discussed is presented in Table I.

This section then seeks to serve a number of purposes. First,
we will take an in-depth look at the most common devices
found in high performance computing systems. This discussion
will include what type of data exists, how this data is accessed,
the accuracy of this data, how frequently it can be collected,
as well as how useful it is. Secondly, we will show some
examples of what this data looks like at scale with a variety
of applications written specifically for these devices. Finally,
we will have an informal discussion of what we believe future
systems should look like in terms of environmental data.

A. Blue Gene/Q

We have looked extensively at the IBM Blue Gene/Q
(BG/Q) in our previous research [3], [4]. The Blue Gene/Q
architecture is described in detail in [5]. Our analysis of power

TABLE I
COMPARISON OF ENVIRONMENTAL DATA AVAILABLE FOR THE INTEL

XEON PHI, NVIDIA GPUS, BLUE GENE/Q, AND RAPL.

Xeon Phi NVML Blue Gene/Q RAPL
Total Power
Consumption (Watts) 3 3 3 3

Voltage 7 3 3 3
Current 7 3 3 7

PCI Express 3 7 3 N/A
Main Memory 7 7 3 3

Temperature
Die 3 3 7 7

DDR/GDDR 3 7 7 7
Device 7 3 7 3

Intake (Fan-In) 3 3 N/A N/A
Exhaust (Fan-Out) 3 3 N/A N/A

Main Memory
Used 3 3 3 7
Free 3 3 3 7

Speed (kT/sec) 3 7 3 7
Frequency 3 7 3 7

Voltage 3 7 3 7
Clock Rate 3 3 3 7

Processor
Voltage 3 7 3 3

Frequency 3 7 3 3
Clock Rate 3 3 3 3

Fans
Speed (In RPM) 3 3 N/A N/A

Limits
Get/Set Power Limit 3 3 7 3

usage on BG/Q is based on Argonne National Laboratory’s 48-
rack BG/Q system, Mira. A rack of a BG/Q system consists
of two midplanes, eight link cards, and two service cards. A
midplane contains 16 node boards. Each node board holds
32 compute cards, for a total of 1,024 nodes per rack. Each
compute card has a single 18-core PowerPC A2 processor [6]
(16 cores for applications, one core for system software, and
one core inactive) with four hardware threads per core, with
DDR3 memory. BG/Q thus has 16,384 cores per rack.

In each BG/Q rack, bulk power modules (BPMs) convert AC
power to 48 V DC power, which is then distributed to the two
midplanes. Blue Gene systems have environmental monitoring
capabilities that periodically sample and gather environmental
data from various sensors and store this collected information
together with the timestamp and location information in an
IBM DB2 relational database – commonly referred to as
the environmental database [7]. These sensors are found in
locations such as service cards, node boards, compute nodes,
link chips, bulk power modules (BPMs), and the coolant envi-
ronment. Depending on the sensor, the information collected
ranges from various physical attributes such as temperature,
coolant flow and pressure, fan speed, voltage, and current.
This sensor data is collected at relatively long polling intervals
(about 4 minutes on average but can be configured anywhere
within a range of 60-1,800 seconds), and while a shorter
polling interval would be ideal, the resulting volume of data
alone would exceed the server’s processing capacity.

The Blue Gene environmental database stores power con-
sumption information (in watts and amperes) in both the input
and output directions of the BPM. An example of the power



data collected is presented in Figure 1. In this instance, the
job running was the million messages per second (MMPS)
benchmark [8]. The MMPS benchmark helps us understand how
many messages can be issued per unit time. It measures the
interconnect messaging rate, which is the number of messages
that can be communicated to and from a node within unit of
time.

Time
2
1
:5
8
:5
5
.3
2
8

2
1
:5
8
:5
5
.3
2
2

2
1
:5
3
:5
3
.0
6
9

2
1
:5
3
:5
3
.0
6
3

2
1
:4
8
:5
0
.2
1
1

2
1
:4
8
:5
0
.2
0
3

2
1
:4
3
:4
7
.8
8
4

2
1
:3
8
:4
6
.0
0
9

2
1
:3
8
:4
5
.0
0
0

2
1
:3
3
:4
3
.0
8
8

2
1
:3
3
:4
3
.0
8
2

2
1
:2
8
:4
0
.5
0
8

2
1
:2
8
:4
0
.5
0
2

2
1
:2
3
:3
8
.4
4
0

2
1
:2
3
:3
8
.4
3
4

2
1
:1
8
:3
6
.1
8
9

2
1
:1
3
:3
2
.9
9
3

2
1
:1
3
:3
2
.9
8
2

2
1
:0
8
:3
0
.5
3
6

2
1
:0
8
:3
0
.5
2
9

2
1
:0
3
:2
7
.6
1
9

2
1
:0
3
:2
7
.6
1
1

2
0
:5
8
:2
5
.0
3
4

2
0
:5
8
:2
5
.0
2
7

In
p

u
t 

P
o

w
e

r 
(W

a
tt

s)

1800

1600

1400

1200

1000

800

Fig. 1. Power as observed from the data collected at the bulk power supplies.
The idle period before and after the job is clearly observable.

In addition to the environmental database, IBM provides
interfaces in the form of an environmental monitoring API
called EMON that allows one to access power consumption
data from code running on compute nodes, with a relatively
short response time. The power information obtained using
EMON is total power consumption from the oldest generation
of power data. Furthermore, the underlying power measure-
ment infrastructure does not measure all domains at the exact
same time. This may result in some inconsistent cases, such
as the case when a piece of code begins to stress both the
CPU and memory at the same time.

In the mean time, we needed a reliable and accurate way to
measure this data. Out of this necessity MonEQ [9], a “power
profiling library” that allows us to read the individual voltage
and current data points for each of the 7 BG/Q domains,
was born. Much more discussion on MonEQ and its features
follows in Section III.

One limitation of the EMON API that we cannot do
anything about is that it can only collect data at the node card
level (every 32 nodes). This limitation is part of the design of
the system and it is not possible to overcome in software.

The same MMPS benchmark as observed by MonEQ is
presented in Figure 2. As can be seen, the power consumption
of the node card matches that of the data collected at the BPM
in terms of total power consumption and overall length, but
since the data is collected by MonEQ at run time, the idle
period before and after the application run is no longer visible.
What’s more, because of the higher sampling frequency, there
are many more data points than observed from the BPM.
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Fig. 2. Power as observed from the data collected by MonEQ across the
7 domains available captured at 560ms. The top line represented the power
consumption of the node card. This data is the same as that collected from
the BPMs, but at a higher sampling frequency.

As far as the collection overhead, we found that each
collection takes about 1.10 ms which results in a total overhead
of about 0.19%.

B. Intel RAPL

As of the Sandy Bridge architecture, Intel has provided
the “Running Average Power Limit” (RAPL) interface [10].
While the original design goal of RAPL was to provide a
way to keep processors inside of a given power limit over a
given sliding window of time, it can also be used to calculate
power consumption over time which is especially useful for
applications. The circuitry of the chip is capable of providing
estimated energy consumption based on hardware counters.

The Intel model-specific registers (MSRs) are implemented
within the x86 instruction sets to allow for the access and
modification of parameters which relate to the execution of
the CPU. There are many of these registers, but most of them
aren’t useful in terms of environmental data collection. Table
II gives an overview of the registers which are useful for
environmental data collection.

TABLE II
LIST OF AVAILABLE RAPL SENSORS.

Domain Description
Package (PGK) Whole CPU package.
Power Plane 0 (PP0) Processor cores.
Power Plane 1 (PP1) The power plane of a specific device in the

uncore (such as a integrated GPU–not useful
in server platforms).

DRAM Sum of socket’s DIMM power(s).

Accessing these MSRs requires elevated access to the
hardware which is something that typically only the kernel can
do. As a result, a kernel driver is necessary to access these
registers in this way. As of Linux 3.14 these kernel drivers
have been included and are accessible via the perf_event



(perf) interface. Unfortunately, 3.14 is a much newer version
of kernel than most distributions of Linux have.

Currently, short of having a supported kernel the only way
to get around this problem is to use the Linux MSR driver
which exports MSR access to userspace. Once the MSR driver
is built and loaded, it creates a character device for each logical
processor under /dev/cpu/*/msr. For the purposes of
collecting this data, this still does not get around the root only
limitation. The MSR driver must be given the correct read-
only, root-only access before it is accessible by any process
running on the system.

There are a number of limitations with RAPL, with the
biggest being that of scope. For the CPU, the collected metrics
are for the whole socket. As a result, it’s not possible to collect
data for individual cores. What’s more, the DRAM memory
measurements do not distinguish between channels. This also
means that currently, it’s not possible to set per-core power
limits.

The subject of the accuracy of the data obtained from the
RAPL interface has been looked at fairly extensively [11],
[12]. It has been generally concluded that the updates are
not accurate enough for short-term energy measurements with
the updates happening within the range of ±50, 000 cycles.
However, few updates deviate beyond 100,000 cycles making
the RAPL interface relatively accurate for data collection at
about 60ms. On the other hand, these registers can “overfill”
if they are not read frequently enough, so a sampling of more
than about 60 seconds will result in erroneous data. Given most
applications are likely going to want more frequent collection
than that, this does not render the RAPL interface useless.
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Fig. 3. Power consumption of a Gaussian Elimination workload captured
at 100ms for the whole CPU package. Capture started before and terminated
after program execution.

An example of the data obtained from the RAPL interface
for Gaussian Elimination code is shown in Figure 3. In this
instance, the capture of data was started before and terminated
after the program had executed to show what the idle state
of the CPU looks like. One of the more interesting things
to note is the rhythmic drop of about 5 Watts in power

consumption throughout the execution of the workload. What’s
more, between these drops there are tiny spikes in power at
regular intervals. It is not known at this time why this is the
case.

Overhead of data collection for RAPL will almost certainly
depend on the method which is used. One would expect that
using the perf interface would result in higher access times
than reading the MSRs directly due to the overhead of having
to go through the kernel. Unfortunately, at the time of this
paper we did not have ready access to a Linux machine
running a new enough kernel to test the overhead of collection
using the perf interface.

The overhead of accessing the MSR however we know to
be about 0.03 ms per query. This is the fastest access time that
we have seen for all of the hardware discussed in this paper as
polling the MSR is essentially pulling the data directly from
the registers on the CPU.

C. NVIDIA Management Library

The NVIDIA Management Library (NVML) is a C-based
API which allows for the monitoring and configuration of
NVIDIA GPUs. The only NVIDIA GPUs which support
power data collection are those based on the Kepler archi-
tecture, which at this time are only the K20 and K40 GPUs.

In terms of power consumption, the only call that exists
to collect power data is nvmlDeviceGetPowerUsage().
On the current generation of GPUs, the reported accuracy by
NVIDIA is ±5W with an update time of about 60ms. Unlike
other devices discussed in this paper, the power consumption
reported is for the entire board including memory.
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Fig. 4. Power consumption of a NOOP workload on a NVIDIA K20
GPU captured at 100ms. Shows gradual increase until finally leveling off
and staying there for the rest of the time.

A very basic example of what the power data look like
is presented in Figure 4. The kernel function here is a
basic NOOP which is executed a certain number of times
as to gather enough data to give a decent representation.
Interestingly, and in contrast to the other devices discussed,
the jump in power consumption once the workload is tasked



to the GPU is not nearly as severe. In fact, it takes about 5
seconds before the power consumption levels off to a constant
value. While the exact reason for this is unknown, the working
theory we have come up with is that because of the lock-step
nature of the way threads are executed on a GPU, it’s possible
that it takes a few seconds before they are all synchronized.
The experiment was run on a NVIDIA K20 GPU which has
a peak performance of 1.17 teraFLOPS at double precision, 5
GB of GDDR5 memory, and 2496 CUDA cores.

A more interesting vector add workload is presented in
Figure 5. As with the NOOP workload, the first few seconds
show the power consumption slowly increasing to a level value
of about 55 Watts. Important to note here is this workload
first generates the data on the host side and then transfers the
data to the GPU for the vector addition, so for the first 10
or so seconds, the GPU hasn’t been given any work to do.
After the data is generated and handed off to the GPU for
computation, the power consumption increases dramatically
where it remains for the remainder of the computation.
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Fig. 5. Power consumption and temperature of a vector add workload. Power
curve shows same gradual increase in first few seconds as sleep workload
with rapid increase after data generation until workload finishes. Temperature
shows steady increase.

The overhead for polling a NVIDIA GPU is higher than any
of the hardware we have seen thus far. The primary reason
being that any call to the GPU for data collection not only
needs to go through the NVML library, it must also transfer
data across the PCI bus. Each collection takes about 1.3 ms
which results in an overhead of about 1.25%.

D. Intel Xeon Phi / MIC

The Intel Xeon Phi is a coprocessor which has 61 cores with
each core having 4 hardware threads per core yielding a total
of 244 threads with a peak performance of 1.2 teraFLOPS at
double precision.

On the Intel Xeon Phi, there are two ways in which
environmental information may be collected on the host side.
The first is the “in-band” method which uses the symmetric
communication interface (SCIF) network and the capabilities
designed into the coprocessor OS and the host driver.

The SCIF enables communication between the host and
the Xeon Phi as well as between Xeon Phi cards within the
host. Its primary goal is to provide a uniform API for all
communication across the PCI Express buses. One of the most
important properties of SCIF is that all drivers should expose
the same interfaces on both the host and on the Xeon Phi.
This is done so that software written for SCIF can be executed
wherever it is most appropriate. This implementation includes
both a user mode library and a kernel mode driver to maximize
portability. This is graphically illustrated in Figure 6.

The second is the “out-of-band” method which starts with
the same capabilities in the coprocessors, but sends the in-
formation to the Xeon Phi’s System Management Controller
(SMC). The SMC can then respond to queries from the
platform’s Baseboard Management Controller (BMC) using
the intelligent platform management bus (IPMB) protocol to
pass the information upstream to the user.
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Fig. 6. Control panel software architecture. Shows the SCIF interface on the
host and device side as well as the communication pattern. [13]

Both of these methods assume the user wishes to gather
information on the host side. However, there is a third way
in which environmental information can be obtained. The
MICRAS daemon is a tool which runs on both the host and
device platforms. On the host platform this daemon allows for
the configuration of the device, logging of errors, and other
common administrative utilities. On the device though, this
daemon exposes access to environmental data through pseudo-
files mounted on a virtual file system. In this way, when one
wishes to collect data, it’s simply a process of reading the
appropriate file and parsing the data.

Curiously, there are trade-offs between these two collection
methods. Figure 7 shows a boxplot of the power consumption
as measured between the SysMgmt API and MICRAS daemon
for a no-op workload. As can be seen, while slight, there is a
statistically significant difference between the two collection
methods. The reason behind this will be explained later.

Another trade-off is the data collected by the daemon is
only accessible by the portion of code which is running on the
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Fig. 7. Boxplot of power data for both the SysMgmt API (“in-band”) and
daemon capture methods.

device. As a result, there is an unavoidable overhead associated
with any data collection which is performed in this mode. In
other words, any collection performed must occur during the
execution of the application which is running thus causing
contention between the application and the data collection
process.

However, as previously mentioned, there is a difference in
baseline power consumption between these collection meth-
ods, and, despite the data collection code which utilizes the
API executing on the host, it actually results in greater power
consumption over idle. As SCIF implementations have both a
user library and kernel driver, when an API call is made to the
lower-level library to gather environmental data, it must travel
across the SCIF to the card where user libraries call kernel
functions which allow for access of the registers which contain
the pertinent data. This explains the rise in power consumption
as a result of using the API; code that wasn’t already executing
on the device before the call was made must run, collect, and
return.

Further complicating the issue is the overhead associated
with both of the collection methods. When accessing the data
through the API, each collection takes a staggering 14.2 ms
which results in an overhead of about 14%. Polling the data
provided by the MICRAS daemon however results in nearly
the same overhead as RAPL, about 0.04 ms per query. These
results are almost the same because the implementation on
both is essentially the same; the Xeon Phi actually uses RAPL
internally for power consumption limitation.

To show what data looks like at a bit larger scale we profiled
a Gaussian elimination code running on 128 Xeon Phi’s on the
Stampede supercomputer. It should be noted that MonEQ can
easily scale to a full system run on Stampede just as it has
been shown to on other supercomputers. This experiment was
run on 16 Xeon Phi’s in the interest of preserving allocation.
Stampede is a Dell Linux Cluster at the University of Texas
at Austin. It is based on 6,400+ Dell PowerEdge server nodes,
each outfitted with 2 Intel Xeon E5 (Sandy Bridge) processors
and an Intel Xeon Phi Coprocessor. The results of this are

Time Since Start (Seconds)

250200150100500

S
u

m
 P

o
w

e
r 

(W
a

tt
s)

25,000

20,000

15,000

10,000

5,000

0

Fig. 8. Sum of power consumption for a Gaussian Elimination workload
running on 128 Xeon Phi cards on Stampede. Data generation takes place for
about the first 100 seconds. After which, data is transferred to the cards and
computation begins.

shown in Figure 8. Clearly shown is the point where data
generation stops and computation starts.

III. DISCUSSION OF POWER PROFILING TOOLS

While we have focused on the results obtained from our pro-
filing tool MonEQ, it’s worth mentioning there are tools other
than MonEQ which allow for the collection of power data. One
such tool is PAPI [14], [15]. PAPI is traditionally known for its
ability to gather performance data, however the authors have
recently begun including the ability to collect power data. PAPI
supports collecting power consumption information for Intel
RAPL, NVML, and the Xeon Phi. PAPI allows for monitoring
at designated intervals (similar to MonEQ) for a given set of
data.

Another such tool is TAU [16]. Like PAPI, TAU is mostly
know for its profiling and tracing toolkit for performance
analysis. However, as of version 2.23, TAU also supports
power profiling collection of RAPL through the MSR drivers.
To the best of our knowledge this is the only system that TAU
supports for power profiling.

PowerPack [17] is a well-known power profiling tool which
historically gathered data from hardware tools such as a
WattsUp Pro meter connected to the power supply and a NI
meter connected to the CPU/memory/motherboard/etc. Recent
development (PowerPack 3.0) has allowed for the collection of
software accessible power data. However, even as of this latest
version PowerPack does not allow for the collection of power
data from newer generation hardware such as Intel RAPL,
NVML, or the Xeon Phi.

Wanting to address these limitations as well as others, we
designed MonEQ. In our previous work, MonEQ was only
able to gather power data from the BG/Q supercomputer. In
this work however, we have extended it to support the most
common of devices now found in supercomputers with the
same feature set and ease of use as before.

In its default mode, MonEQ will pull data from the selected
environmental collection interface at the lowest polling interval



possible for the given hardware. However, users have the abil-
ity to set this interval to whatever valid value is desired. With
the value of the polling interval set, MonEQ then registers
to receive a SIGALRM signal at that polling interval. When
the signal is delivered, MonEQ calls down to the appropriate
interface and records the latest generation of environmental
data available in an array local to the finest granularity possible
on the system. For example, on a BG/Q, this is the local
agent rank on a node card, but for other systems this could
be a single node. If a node has several accelerators installed
locally, each of these is accounted for individually within the
file produced for the node.

Listing 1. Simple MonEQ Example
i n t s t a t u s , myrank , numtasks , i t r ;

s t a t u s = M P I I n i t (& argc , &argv ) ;

MPI Comm size (MPI COMM WORLD, &numtasks ) ;
MPI Comm rank (MPI COMM WORLD, &myrank ) ;

s t a t u s = MonEQ Init ia l ize ( ) ; / / S e t u p Power

/∗ User code ∗ /

s t a t u s = MonEQ Finalize ( ) ; / / F i n a l i z e Power

M P I F i n a l i z e ( ) ;

Since the interface for MonEQ was already well defined
from our experiences with BG/Q (an example is shown in
Listing 1), we kept that the same while adding the necessary
functionality for other pieces of hardware internally. As a
result, one wishing to profile data with MonEQ simply needs
to link with the appropriate libraries for the hardware which
they are running on. This of course means that if a system has
both a NVIDIA GPU as well as an Intel Xeon Phi, profiling
is possible for both of these devices at the same time.

Oftentimes application developers have logically and func-
tionally distinct portions of their software which is of primary
interest for profiling. To address this, we have implemented a
tagging feature. This feature allows for sections of code to be
wrapped in start/end tags which inject special markers in the
output files for later processing. In this way, if an application
had three “work loops” and a user wanted to have separate
profiles for each, all that is necessary is a total of 6 lines
of code. Better yet, because the injection happens after the
program has completed, the overhead of tagging is almost
negligible.

In terms of overhead, we’ve made sure to design MonEQ
so that it is as robust as possible without weighing down the
application to be profiled. For each of the major pieces of
hardware discussed in this paper we mentioned the overhead
for the profiling call to whatever API is to be used for
collection. As one would expect, this profiling call is just one
part of a profiling library and we have shown that it varies
from system to system. However, in general the overhead is
mostly dependent on the number of devices that are being
profiled. The reasoning for this is simple, the more nodes the
more data points. For this reason we’ve designed MonEQ to

perform its most costly operations when the application isn’t
running (i.e, before and after execution). The only unavoidable
overhead to a running program is the periodic call to record
data. Here again, the method which records data does so as
quickly and efficiently as possible for all types of hardware.

Making it an ideal case to study the overhead of MonEQ,
Table III shows a toy application profiled at the most frequent
interval possible at three different scales on BG/Q. The appli-
cation is designed to run for exactly the same amount of time
regardless of the number of processors making it an ideal case
to study the overhead of MonEQ.

From the data we can see that the time spent during
initialization and collection is the same in all three cases
with only the time spent during finalization having any real
variability. This follows intuition as regardless of hardware
or scale the initialization functions only needs to setup data
structures and register timers and the collection method only
needs to collect data. It’s important to note that the design of
MonEQ is such that collection of data is the same for all nodes
assuming they are homogeneous among themselves. That is,
if every node in a system has two GPUs, then every node will
spend the same amount of time collecting data.

The finalization method really has the most to do in terms of
actually writing the collected data to disk and therefore does
depend on the scale the application was run at. While every
system will certainly result in different times for this method
(subject to network speeds, disk speeds, etc.), we see that on
BG/Q at the 1K scale MonEQ has a total time overhead of
about 0.4% including the unavoidable collection.

Memory overhead is essentially a constant with respect
to scale regardless of hardware. The initialization stage of
MonEQ allocates an array of a custom C struct with fields that
correspond to all possible data points which can be collected
for the given hardware. The size of the array is allocated to a
reasonably large number such that even on one of the biggest
production machines in the world it would be able to collect
data for quite some time while not consuming an excess of
memory. Of course, this number isn’t set in stone and can
be modified if desired to decrease the memory overhead of
MonEQ or to support a longer execution time. Thus, in a
way memory overhead is essentially up to the person who
is integrating MonEQ into their application.

Overall this makes MonEQ easy to use, lightweight, and
extremely scalable. Our experiences with MonEQ show that it
can easily scale to a full system run on Mira (49,152 compute
nodes).

TABLE III
TIME OVERHEAD FOR MONEQ IN SECONDS ON MIRA

32 Nodes 512 Nodes 1024 Nodes
Application Runtime 202.78 202.73 202.74
Time for Initialization 0.0027 0.0032 0.0033
Time for Finalize 0.1510 0.1550 0.3347
Time for Collection 0.3871 0.3871 0.3871
Total Time for MonEQ 0.5409 0.5455 0.7251



IV. CONCLUSIONS AND LOOKING FORWARD

In this paper we have presented a comprehensive overview
of the environmental monitoring capabilities which are present
on the current set of the most common hardware found
in supercomputers. We have shown that in many cases the
same environmental data isn’t available between two different
devices. What’s more, the method by which this data is
accessed varies substantially as well. Just about the only data
point which is collectible on all of these platforms is total
power consumption at some granularity. For accelerators, this
is the power consumption of the entire device, for a Blue
Gene/Q, this is a node card (32 nodes).

Looking forward, the single largest issue which is prac-
tically impossible to eliminate is that of collection overhead.
Whether it’s overhead as a result of having to run the collection
code along with the application being profiled or overhead
as a result of an API call, there will also be some cost
associated with gathering this data. However, there are some
improvements that could be made to the current generation of
hardware discussed in this work which would make the data
they provide more beneficial.

The first and perhaps most important is stated limitations of
the data and the collection of this data. For many of the devices
discussed, the limitations in collection had to be deduced from
careful experimentation. Especially in the case of the Xeon
Phi; it’s not necessarily intuitive that the API would have a
greater base overhead than collecting the data directly from
the daemon running on the card. Another example, when
collecting data from RAPL, if the frequency goes above 60
seconds then it’s possible the register will overflow causing
the next collection to produce incorrect results.

Secondly, unification of available data is of the utmost
of importance if this data is to be used for comparison of
platforms. The Blue Gene/Q with its 7 domains provides a
very good representation of the compute node on the whole
as it covers the necessary data for the major components of
the node card. In the case of NVIDIA GPUs on the other
hand, one must settle for total power consumption of the whole
card when clearly the power consumption of both the GPU
and memory would be more beneficial. On the other hand,
NVIDIA GPUs support temperature data whereas this data is
only accessible in the environmental data for a Blue Gene/Q
and only at the rack level.
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