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Abstract—In addition to pushing what is possible computa-
tionally, state-of-the-art supercomputers are also pushing what
is acceptable in terms of power consumption. Despite hardware
manufacturers researching and developing efficient system com-
ponents (e.g., processor, memory, etc.), the power consumption
of a complete system remains an understudied research area.
Because of the complexity and unpredictable workloads of these
systems, estimating the power consumption of a full system is a
nontrivial task.

In this paper, we provide system-level power usage and tem-
perature analysis of early access to Argonne’s latest generation of
IBM Blue Gene supercomputers, the Mira Blue Gene/Q system.
The analysis is provided from the point of view of jobs running on
the system. We describe the important implications these system
level measurements have as well as the challenges they present.
Using profiling code on benchmarks, we will also look at the
new tools this latest generation of supercomputer provides and
gauge their usefulness and how well they match up against the
environmental data.

I. INTRODUCTION

As the field of supercomputing continues to push towards
the exascale era, power consumption is becoming an in-
creasingly vital area of research. The current leader on the
November 2012 Top500 list [1], Titan, achieves 17.5 PFlops
Rmax while consuming 8.2 MW. It is projected that exascale
systems will be capped at a power consumption of 20 MW [2].
This implies that to achieve exascale, current supercomputers
will need to scale their performance by ∼60X while increasing
their power consumption by just ∼2X - a challenging task.

Hardware manufacturers already recognize this problem,
and, by leveraging better design choices and tradeoffs, have
made significant strides toward mitigating this problem. Im-
provements to hardware alone will not be enough though, soft-
ware will also have a big role to play namely in ensuring power
is not wasted by dynamically managing power consumption
across the system.

The majority of performance studies on large-scale high
performance computing (HPC) systems (including those pub-
lished by the Green500 [3]) focus on the Flop/Watt metric.
While this metric is useful, it fails to say much about individual
components and how they affect the system on the whole.
Moreover, it is also recognized that a different metric, time
to solution, would likely result in different rankings than
Flop/Watt [4]. Therefore, analysis of power consumption on

state-of-the-art supercomputers is imperative to better under-
stand how they differ from previous generations and in which
direction key characteristics are heading.

Fortunately, hardware manufacturers are starting to deploy
various sensors on HPC systems to collect power-related data
as well as providing relatively easy access to the data they
collect. In this work, we will describe two power monitoring
capabilities deployed on the Blue Gene/Q (BGQ): one is an
environmental database and the other is profiling code built
on vendor-supplied application programming interfaces (APIs)
to profile power usage through the code of jobs actually
running on the system. They provide information about the
power consumption at two different scales. The environmental
database is maintained primarily to help identify and elimi-
nate insufficient cooling as well as inadequate distribution of
power. The profiling code, on the other hand, provides power
consumption data directly to the running process across more
power domains with respect to components and at much finer
granularity with respect to time.

In this paper, we compare the data collected from both
sources in order better understand their usefulness. We provide
analysis of data from one month of jobs run on the system
to get a better idea of what trends this latest generation
of supercomputer exhibits. To achieve this, we integrated
a power-profiling library with an existing benchmark and
compared the environmental data collected by the system to
the data gathered by our profiling code as a means to gain a
deeper understanding of what is possible with more data.

The rest of this paper is as follows: After reviewing the
related work in Section II and IBM Blue Gene architecture
as well as the environmental data collection of the system in
Section III, we will provide detailed environmental analysis
from our early experiences with BGQ in Section IV. We
will also show a sample of data collected from the new and
improved power-measuring capabilities of BGQ and provide
comparison to the data found in the environmental database in
Section V. Finally, we will provide our conclusions and future
work in Section VI.

II. RELATED WORK

Research in energy-aware HPC has been active in recent
years, and existing studies have mainly focused on the fol-



lowing topics: power monitoring and profiling energy-efficient
or energy-proportional hardware, dynamic voltage and fre-
quency scaling (DVFS) techniques, shutting down hardware
components at low system utilizations, power capping, and
thermal management. These studies however focus on evalu-
ating power consumption of individual hardware components
and neglect to consider the system as a whole [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15].

From the system-level perspective, power consumption of
HPC systems has increasingly become a limiting factor as
running and cooling large computing systems comes with
significant cost [16], [17], [18].

Hennecke et al. [19] provided an overview of the power
measuring capabilities of Blue Gene/P (BGP). The measured
power consumption a production workload of HPC appli-
cations and presented the integration of power and energy.
However, no in-depth analysis on the accuracy was presented
in that study.

Alam et al. [20] measured power and performance results of
different kernels and scientific applications on BGP. They also
compared these results to other large-scale supercomputers
such as Cray’s XT4. They concluded that while BGP has good
scalability and better performance-per-watt characteristics for
certain scientific applications, XT4 offers higher performance
per processor.

Yoshii et al. [21] evaluated early access power monitoring
capabilities on IBM BGQ utilizing the EMON API. While they
did provide an in-depth analysis of the monitoring capabilities
of BGQ, they did not analyze data from actual jobs that had
run on the system.

III. BLUE GENE/Q ARCHITECTURE AND
ENVIRONMENTAL DATA COLLECTION

The Blue Gene/Q architecture is described in detail in [22].
Our analysis of power usage on BGQ is based on Argonne
National Laboratory’s 48-rack BGQ system called Mira. A
rack of a BGQ system consists of two midplanes, eight link
cards, and two service cards. A midplane contains 16 node
boards. Each node board holds 32 compute cards, for a total
of 1,024 nodes per rack. Each compute card has a single 18-
core PowerPC A2 processor [23] (16 cores for applications,
one core for system software, and one core inactive) with four
hardware threads per core, with DDR3 memory. BGQ thus has
16,384 cores per rack.

In each BGQ rack, bulk power modules (BPMs) convert
AC power to 48 V DC power, which is then distributed to
the two midplanes. Blue Gene systems have environmental
monitoring capabilities which periodically sample and gather
environmental data from various sensors and store this col-
lected information together with the timestamp and location
information in an IBM DB2 relational database; This is
commonly referred to as the environmental database [24].
These sensors are found in locations such as service cards,
node boards, the compute nodes themselves, link chips, BPMs,
and the coolant environment. Depending on the sensor, the
information collected ranges from various physical attributes

such as temperature, coolant flow and pressure, fan speed,
voltage, and current. This sensor data is collected at relatively
long polling intervals (about 4 minutes on average but can be
configured anywhere within a range of 60-1,800 seconds), and
while a shorter polling interval would be ideal, the volume of
data and stress that would be imparted on the database would
exceed the server’s processing capacity.

The Blue Gene database stores power consumption infor-
mation (in watts and amperes) and temperature information
(in degrees Celsius) for the following components that are of
particular interest to us in this paper:

• Bulk - AC/DC converter on a rack—power consumption
is measured in both the input and output directions

• Node Board - Temperature
• Node - Temperature
• Link Card - Temperature
• Service Card - Temperature
• Coolant - Temperature sensors located between the inlet

and outlet pipes
Figure 1 depicts how power is distributed from the power

substation to the Mira BGQ system. It shows the various
measurement points along this path where we can monitor
the power consumption.

Fig. 1. Mira 480V compute power distribution system.

IV. ANALYSIS OF ENVIRONMENTAL POWER USAGE AND
TEMPERATURE ON BLUE GENE/Q

The data analyzed is a one month sample from September
2012, during which time part of the system was undergoing
stability and short testing and the rest of the system was in
maintenance. All of the results are presented from the point
of view of an “average” job. That is, for a given metric, the
average across all jobs was used for calculation. For the results
that present energy usage as a function of percentage of time,
all of the jobs were normalized on their respective wall time.

Stability testing was performed on half of the system near
the last week of the month. The rest of the data is the result
of jobs that were run on very specific portions of the system
to verify operation of components. Since the system wasn’t
fully operational for the entirety of the month, there were
significantly more jobs that ran on 8 racks or less than there



were jobs that ran on more than 8 racks. However, as will
be discussed in greater detail in the following sections, the
power consumption per rack is relatively stable from single-
rack jobs to full-system jobs. While this data is not identical
to real system usage, it’s important to get an idea of what
power consumption looks like for a wide ranging number
of activities. As more data becomes available from the early
science application runs, these results will be a great point for
comparison.

TABLE I
NUMBER OF JOBS RUN ON n NUMBER OF RACKS

Number of Racks Number of Jobs
1 1,308
2 539
4 318
8 328
16 90
24 1
32 6
48 4

Total 2,594

A. Power

Figure 2 shows a boxplot of input power consumption per
rack for an average job. As discussed earlier, while this data set
does not include a large number of greater than 8 rack job runs,
there isn’t a significant difference in the power consumption
between smaller system runs and larger ones.

Fig. 2. Boxplot of kilowatt usage per rack. Shows no significant difference in
jobs running on small or large number of racks. Average power consumption
is 70.32 kW per rack.

Figure 3 shows the distribution of average kW/rack power
consumption for the 2,594 jobs that were run during the
month of September 2012. The histogram displays percentages
partitioned separately by size ranging from single-rack jobs to
full-system runs. Most jobs fall into the 65 to 75 kW per rack
range, and very few jobs are at or above 85 kW per rack.
While difficult to see in the histogram, the data shows that
larger jobs (at or above 24 racks) tend to be in the 70 kW per
rack bin.

Note that this is the sum of the 48 V DC output of the
BPMs so it does not include AC/DC conversion loss within
the BPMs. Given a BPM conversion efficiency of about 94%,
average AC input per rack would be roughly 74 kW.

Fig. 3. Frequency distribution of average per-rack power consumption. Figure
indicates most jobs fall into the 60-80 kW bins and all jobs are between 40
and 90 kW.

Figure 4 shows how the average input power measured at
a given sensor on the BPMs changes as a function of a jobs
execution time. The figure intriguingly shows that the power
consumption of a job does slightly increase as a function of
the amount of time it has been running. The first and last 5%
are shown to be on average about 180 W less than the middle
90% and are likely influenced by the bootup and shutdown
of the partition. Bootup times are mostly proportional to the
size of the job to be run, but there is also further fluctuation
due to environmental factors or otherwise. What’s more, these
bootup times haven’t been precisely measured and analyzed
over a large sample size, so any values we could have applied
to further analyze the impact on power consumption would
have been educated guesses at best. Surely these times are
something that require further analysis in the future.

Fig. 4. Average power usage profile of a job running on system. Shows
power on average does increase as a function of time. First and last 5% likely
influenced by startup and shutdown times.



Figure 5 shows the efficiency of the BPMs as as a function
of time. Efficiency is quite simply defined to be the ratio
of output power to input power. Since AC power must be
converted to DC power, there will always be some loss
associated with the BPMs which begs the question, what
impact does a running job have on efficiency? Coincidentally,
that turns out to be a very difficult question to answer. As
can be seen in the figure, there are several times during the
execution of a given job when the efficiency goes over 100%.

As it turns out, BPM power monitoring was not imple-
mented with the goal of reporting real-time conversion effi-
ciency. This is mainly due to dissimilar sampling and aver-
aging algorithms; input values have a much longer averaging
window than output, so any transients will cause numbers to
diverge from the actual conversion efficiency. What’s more, the
percentage of load on the BPMs also affects the percent error.
The closer the load is to 100%, the less the percent error. More
detailed information on the sampling and averaging parameters
for the BPMs can be found in Table II.

These errors in reporting however do not mean that no
useful information can be obtained from this data. With
enough data, it is still possible to come to general conclusions
about factors such as the conversion efficiency. In the case
of this data, we calculated the conversion efficiency to be
about 94% on average by taking the ratio of the input power
to the output power for the entire month. As this percentage
determines the amount of lost power as a result of conversion,
the higher the value, the less power is wasted.

Fig. 5. AC/DC conversion efficiency of BPMs over time. As expected,
the efficiency remains relatively constant over the course of execution for a
given job. Because the sensors on the BPM are not designed for instantaneous
readings, attempting to determine instantaneous efficiency readings is unre-
alistic and therefore results in incorrect values (i.e., over 100%). However,
when looked at over a long period of time, it can be deduced that the BPMs
maintain about 94% conversion efficiency.

B. Temperature

In addition to power, temperature is also an important en-
vironmental factor that needs further analysis. On BGQ, there
are a total of 5 temperature domains: coolant environment, link
chip environment, node card environment, node environment,
and service card environment.

Figure 6 shows how the temperature of each of the 5
temperature domains change over the course of a standard

Fig. 6. Temperature fluctuation as a function of time. As expected, the
system gets “hotter” as jobs run. Most sensors indicate a 2 to 3 degree
increase of individual components. Bootup and shutdown times not taken
into consideration because of fluctuation in those times, thus it is expected
the temperature increase would be more dramatic than depicted.

job’s execution. Given the variance in bootup and shutdown
times, which changes from job to job and is dependent on
node allocation size, the bootup and shutdown times were
not factored into these results. Also, because the scheduler
tries to optimize utilization, jobs are frequently run back-to-
back. It’s likely that given the time to cool down adequately at
idle, the temperature changes would be more dramatic. Except
for the node environment, all other temperature domains are
very strongly correlated with the regression line and all have
a positive slope. This makes intuitive sense as the longer a job
runs, the hotter the system on the whole gets. However, it’s
interesting that despite giving no consideration to cool down
there is still an average of 2-3 degrees difference between the
start and end of a job across almost all domains.

While this data is not directly correlatable to the data
presented in Figure 4 due to differences in polling times for
power and temperature sensors, it does show the same general
trend that as a job continues to run, it both uses more power
and as a result produces higher temperatures.

V. ANALYSIS OF BLUE GENE/Q EMON API DATA

In this section, we will describe our power profiling code
and discuss the results obtained by integrating this code into
the MMPS benchmark [25]. We will also compare these power
consumption results to those obtained from the environmental
database at the BPM level.

On BGQ, IBM provides new interfaces in the form of an
Environmental Monitoring (EMON) API that allows one to
access power consumption data from code running on compute
nodes, with a relatively short response time. However, the
EMON API by itself is insufficient for our needs. The API
only returns the total power consumption of all domains and
does not contain any profiling functionality. To get past this
limitation, we designed, MonEQ [26], a “power profiling



TABLE II
SAMPLING AND AVERAGING PARAMETERS FOR BPMS

ADC-Sampling Averaged Value Update Reported Value
Output Voltage Every 500 µs 160 ms (32 Values Every 5 ms) Every 100ms
Output Current Every 1ms 8ms (8 Values Every 1ms) Every 100ms
Input Voltage Every 200 µs (On Prim µC) 2,5s (38 Values - 6 Half Waves Averaged on Prim µC) Every 100ms
Input Current Every 200 µs (On Prim µC) 2,5s (38 Values - 6 Half Waves Averaged on Prim µC) Every 100ms

library” that allows us to read the individual voltage and
current data points. The exact domains and their corresponding
BGQ IDs are displayed in Table III.

The EMON API is not without its faults, however. The
power information obtained is total power consumption from
the oldest generation. What’s more, the underlying power
measurement infrastructure does not measure all domains at
the exact same time. This may result in some inconsistent
cases, such as the case when a piece of code begins to stress
both the CPU and memory at the same time. In this case, we
might not see an increase in power for both domains in the
same generation of data if there is a gap in time between when
the CPU and memory power are measured. There is active
research by IBM to improve the power monitoring systems,
so this problem may change in the future.

TABLE III
NODE BOARD POWER DOMAINS

Domain ID Description
1 Chip Core Voltage
2 Chip Memory Interface and DRAM Voltage
6 HSS Network Transceiver Voltage Compute+Link Chip
7 Chip SRAM Voltage
3 Optics
4 Optics + PCIExpress
8 Link Chip Core

Our profiling code which utilizes the EMON API, and uses
a timer implemented using the SIGALRM signal handler on
each node board. This timer periodically invokes an “EMON
system call” at an interval lower than the FPGA interval (i.e.,
500ms), records the instantaneous power usage (Watts) across
all available domains along with a timestamp, and proceeds to
either dump this data to text files, or, populate a data structure
available to the job. More details on the EMON API and the
architecture of the node board are discussed in [21].

The MMPS benchmark helps us understand how many mes-
sages can be issued per unit time. It measures the interconnect
messaging rate, which is the number of messages that can
be communicated to and from a node within a unit of time.
This gives a measure of the capability of the underlying
implementation, both software and hardware, to process in-
coming and outgoing messages as quickly as possible. The
selected message size is chosen very small so that the link
bandwidth does not significantly influence the measurements.
In this benchmark, a reference node communicates with all
of its k nearest neighbors that are located on the nodes one
hop away on the torus. Each MPI task on the reference
node communicates with the k corresponding MPI tasks on
the nearest neighbors by sending and receiving zero-length

messages using non-blocking communications.
In our experimental setup, after successfully integrating our

profiling code into the MMPS benchmark, the new profiled
code was set to run on 512 nodes (one midplane) with 16
ranks per node for enough time to generate several data points
from the BPMs. As previously discussed, the polling interval
for the data inserted into the environmental database is quite
long, and while this isn’t a problem for our profiling code, in
order to generate enough data at the environmental database
level, we decided the application had to be run for a minimum
of 20 minutes. While outside of the scope of this paper, the
benchmark reported a maximum message rate of 9.87 million
messages per second.

Figure 7 shows the resulting power consumption of the
BPMs. Initially the node card is powered on but the compute
nodes are not booted. This yields a standby power consump-
tion of roughly 893 W for this experiment when the data is
collected from the environmental database. When the partition
is allocated by mpirun, the compute nodes are booted up
causing an increase in node card power to about 1724 W,
again reported from the environmental database. The figure
clearly shows the point at which the system switches from
standby, to running the application, and back to standby.

Fig. 7. Power usage as collected from the environmental database for the
BPMs. Sharp increase/decrease shows point in time when application switches
from stopped to running and back to stopped.

Figure 8 shows data obtained from our profiling code at
the node card level (a summation of all 7 power domains).
Since the current version of our profiling code only collects
data when the application is in the running state, the times
when the system is idle are not visible in the figure. However,



similar to the data obtained from the BPMs, the data shows a
very quick increase in power consumption at the node board
level as the job starts to run. The power consumption then
remains relatively stable as the program continues to execute.
This data indicates that during program execution there was
an average power consumption of 1,744 W per rank and thus,
about 30 kW for the midplane. This means if we were to
scale this benchmark to a full rack, we would expect the
power usage to be about 60 kW. While this is about 10
kW less than we observed jobs to use per rack on average,
this benchmark is designed to stress network communication
and lacks other assets (such as high compute and memory
utilization) commonly found in real-world applications which
would surely increase total power consumption.

As expected, we see almost identical power usage num-
bers from our profiling code as we do in the environmental
database. The slight difference between them is easily ex-
plained as a difference in polling intervals. As there are signifi-
cantly more data points in the data obtained from our profiling
code, it is the more “precise” of the two. Additionally, while
the environmental database and our profiling code represent
practically equivalent power usage, the higher level of detail
afforded by our profiling code means we can draw much more
precise conclusions on energy consumption especially as a
function of time.

Fig. 8. Power usage of node card collected from profiling code. Because
the EMON API allows for much faster sampling, the increase in power
consumption when the job actually runs is not as dramatic as the figure from
the BPM.

While there exists no data collected at the environmental
database level for the network, given the nature of the MMPS
benchmark it’s worth showing what the power consumption
looks like during execution. For this network-intensive bench-
mark, we combine the link chip core, optics, HSS network,
and PCI express domains, which are all an integral part of
the total network power consumption, in Figure 9. Although
other domains such as the memory and the compute chip are
certainly necessary to feed the network, they have been left out
of this analysis to better focus on the components that directly

influence network power usage. Unlike the data obtained from
the node card, the network power consumption curve does
not show a sharp jump when the application starts running.
Instead, the power consumption remains within 1 W of the
starting value. The average power consumption was calculated
to be 360 W.

Fig. 9. Power usage of four network related domains collected from
profiling code. Displays increasing then decreasing power curve at beginning
of execution leveling out around 500 seconds. Stays within 1 W of starting
value.

To better illustrate how the domains compare to each other
as a result of running this benchmark, Figure 10 shows a pie
chart of the relative percentages that each domain contributes
to total power consumption. The heavy network activity is
well demonstrated by the large portion of power that is used
by the optics. Naturally, this offers a great point of comparison
for other benchmarks designed to stress other portions of the
system. With enough profiling, we could provide expected
ranges across all of the domains for both times of high activity
and low activity.

Fig. 10. Pie chart showing relative percentages of total power usage
consumed by each of the 7 power domains. Intense network activity largely
contributing to optics percentage.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we evaluated the existing power monitoring
capabilities of an IBM Blue Gene/Q system. While these
capabilities were designed primarily for health and environ-
mental monitoring, they are also incredibly useful for profiling
applications and helping to make better design decisions.



We found that despite long polling intervals, the data stored
in the environmental tables of the database can be useful for
determining energy and temperature profiles of actual jobs
running on the system. We also verified that our profiling
library which utilizes the EMON API reports the same data
as can be found in the environmental database at sub-second
polling intervals and across the individual components of the
system instead of just at the BPM level. More importantly,
unlike the environmental data which is only available to
privileged users, the data is directly accessible to the compute
job running on the system.

Looking forward, we will continue to work with and im-
prove our power-profiling code adding more features such as
tagging for critical sections of code. Given the very low polling
intervals, it is now possible to evaluate power consumption
across multiple domains for specific sections of code as
well as the application on the whole. This will be useful
information to gather and study and will provide crucial details
of applications never before possible.
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