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Abstract—A critical problem facing by managing large-scale monitoring tools, including both open-source packagesels w
clusters is to identify the location of problems in a system as commercial solutions [26]-[28], have been deployed ébr ¢
in case of unusual events. As the scale of high performance qcting performance and health data across the entirersyste
computing (HPC) grows, systems are getting bigger. When a The dat lecti tai ith of inf i bout
system fails to function properly, health-related data are collectd € data collection con a'n_s a wealth of information a OL_J
for troubleshooting. However, due to the massive quantities of Normal and abnormal behaviors. However, due to the massive
information obtained from a large number of components, the quantities of information collected from a large number of
root causes Of. anomalies are often buried ) |I|((_3 needles in a system components, the root causes of anomalies preseet int
haystack. In this paper, we present a localization method 10 qat3 are often buried like needles in a haystack. Tradifigna

automatically find out the potential root causes (i.e. a subset . .
of nodes) of the problem from the overwhelming amount of data human operators are responsible to check the data for p@ssib

collected system-wide. System managers can focus on examining?roblems by using their experience and expertise. Manwal pr
these potential locations, thereby significantly reducing human cessing is time consuming and error-prone. More important!

efforts re_quired for anomaly localization. OU_I‘ method consists it does not scaleA desirable approach is to automatically
of three interrelated steps: (1)feature collection to assemble a distill the data and identify the potential root causes of th

feature space for the system; (2feature extraction to obtain the bl f t Rather th i i f
most significant features for efficient data analysis by applying probiem for System managessather than working on tons o

the principal component analysis (PCA) algorithm; and (3)outlier  faw data collected, system managers can focus on examining
detection to quickly identify the nodes that are “far away” these potential locations, thereby significantly redudinghan
from the majority by using the cell-based detection algorithm. efforts required for anomaly localization.
Preliminary studies are presenteq to .demonstratg the pqtentialfo In this paper, we present an automatic method for anomaly
our method for localizing anomalies in a computing environment | lization in | “scale clust iallv thosedu®
where the nodes perform comparable tasks. ‘?Ca 1zation In large-scale _C usters, especially tho . r
high performance computing. Based on the observation that
|. INTRODUCTION the nodes perform comparable activities generally exkihit
As the scale of high performance computing (HPC) grow#ar behaviors, the proposed method explores such a sityilar
the new generation of HPC systems contain tens-of-thossama find a small set of nodes that are substantially differssrhf
to hundreds-of-thousands of components. For systems of ttiie majority. The result can be used as the candidate fdrefurt
scale, reliability becomes a major concern as the systeivestigation by system managers. Our method consists of
wide Mean-Time-Before-Failure (MTBF) decreases dramathree steps: (1jeature collectiorto assemble a feature space
cally with the increasing count of components [38]. for the system (generally has high dimensionality to captur
Recognizing the importance of system reliability, a number wide variety of system features); (Bature extractionto
of methods have been presented to detect when a systatain the most significant features out of the original deat
fails to function properly [1]-[8]. For instance, a modelded space for efficient data analysis by applying the principal
predictive method can be applied to trigger an alert whencamponent analysis (PCA) algorithm [11]; and (8ytlier
deviation from the derived model is observed [17],[37]][36 detectionto quickly identify the nodes that are “far away”
several research projects have exploited data mining tedtem the majority by using the cell-based detection aldponit
nigues to detect critical events in large-scale clusters [2]. PCA is used to significantly reduce time complexity for
capturing and discovering fault patterns [8Yhile it is useful data analysis in a large data set by reducing its dimensignal
for system management by detecting when the system functamd the cell-based algorithm enables us to quickly ideritiéy
abnormally, it is equally important to find out which part ofoutliers in the data set. Together, these interrelateds stép
the system is the source of the problénith the root cause at localizing anomalies being “buried” in massive quaesti
information in hand, system managers know where to fix thod data quickly and effectively.
problem and application users can take corrective or ptexen  We have tested our method with a number of faults in a com-
actions for their applications. In this paper, the process puting environment where the nodes are used for a parameter
determining the source of the problem in a large-scale etussweep simulation [24]. Under eight different fault modédw t
is regarded asnomaly localization proposed localization method is capable of discoveringyeve
Anomaly localization is a challenging problem, especiallfault injected, except in one case where the false negadiee r
in large-scale systems composed of hundreds to thousaisdhigher than zero. Besides, the false positive rate isyswa
of components. Over the past decades, a number of systmntrolled belowd.20, meaning that less tha®% of potential



root causes are false alarms. approaches should be combined and coordinated for imggovin
Different from existing studies using historical data fault fault diagnosis in large-scale systems.
analysis [1], [4], [36], [7] ( which we denote as being based o The work in [18] is the most closely related work to ours.
avertical viewof the system), our method exploitharizontal It also explores a horizontal approach for problem diagnosi
view of the system for anomaly localization. Note that th&hile it focuses on diagnosing application bugs, our work
proposed method is not intended to replace existing faaiims at identifying faulty nodes that may cause system fail-
prediction techniques based on a vertical view, but ratber @res. In addition, our work uses different techniques faada
work with them. A fault prediction mechanism (e.g. a modehnalysis. In [18], the authors apply dynamic instrumeaotati
based or data mining based method [1]-[8]) can be usedttocollect function-level traces from each application qass
determine when the system fails to function properly, whilend then use a pairwise distance comparison to identifyyfaul
this work can be used to further pinpoint the potential lmcat application process(es). In our study, we investigate aethr
of the problem. step method, including both PCA for feature extraction and
The rest of the paper is organized as follows. Section the cell-based algorithm for outlier detection.
provides a brief discussion of the related work. In Sectitih | PCA is a well-studied method, and has been applied in many
we describe the anomaly localization problem, followed by feelds for dimension reduction [11]. Our work is inspired by
detailed description of our three-step method in Section 1¥21], [29]. Both studies use the principal component analys
Section V presents our preliminary experiments. Section Viethod to detect anomalies in network-wide traffic. Our work
points out the practical usage and limitations of the predosdiffers from these studies at two aspects. First, we tangeti{
method. Finally, we conclude the paper in Section VII. izing faulty nodes in large-scale systems such as thosefased
high performance computing. In doing so, our feature space
is quite different from the ones used in [21], [29]. Secondly
Diagnosing system failures has been studied extensivéiey apply classification techniques (i.e. a supervisechieg)
over the past decades. Existing diagnostic techniques eantd identify network anomalies, while we investigate the ae
broadly classified as model-based or data mining based.aA optimized outlier detection method (i.e. an unsupedvise
model-based approach derives a probabilistic or analytidaarning) to find out outliers. To the best of our knowledge,
model of the system. A warning is triggered when a deviatiome are among the first to investigate a systematic methogolog
from the model is detected [36]. For example, Gross et &r anomaly localization in HPC systems.
have presented an adaptive statistical data fitting metalbeic
MSET to forecast the system dependability [37]. In [16], a
naive Bayesian based algorithm is used to predict disk driveBefore formulating the problem, we first describe two terms:
failures. In [17], a specific analytical model is developed f  Failure: According to the IEEE standard 610.12-1990, a
quickly detecting anomalies in 1/0O systems. failure represents the inability of a system to perform
Data mining, in combination with intelligent systems, fo-  its required functions within a specified performance
cuses on learning and classifying known faults without con-  requirement.
structing an accurate model ahead of time. For instances Fault: A fault is defined as an abnormal condition that
the group at the RAD laboratory applies statistical leagnin ~ may cause a reduction in, or loss of, the capability of a
techniques for failure diagnosis in Internet services. 34][ functional unit to perform a required function [20].
Vilalta and Ma investigate frequent itemset mining for diad In [19], the authors show system state transitions between
prediction in a networked system. In [6], Liang et al. exaeninfaults and failures (see Figure 1). In this model, a system
several statistical based prediction techniques (e.giadga has three different states, nam&pod Error, andFailed. A
temporal correlation among RAS events) for failure forécadault causes the system to transit from a good state to an erro
ing in a Blue Gene/L system. In our own previous workstate. The system in an error state generally still funstion
[7], we have investigated a meta-learning based method faobably under a degraded performance. The usage of the
detecting when a cluster may experience failures in the nesystem in the error state brings the system to a failed dtate.
future by adaptively combining the merits of various datageneral, a latency exists between the error state and tlee fai
mining techniques. state. During the latency, the system may transit back to the
Both model-based and data mining based methods maiglyod state via a proper fault tolerance mechanism. Firthky,
focus on predicting when the system behaves abnormaligiled system returns back to the good state via some regover
while our work emphasizes on identifying where the anomalypechanism.
is located, i.e. a subset of faulty nodes. Hence, our workOur aim is to troubleshoot the system in the error state by
complements existing prediction studies. Further, theomaj finding out the root cause of the fault (so called “anomaly”)
ity of existing research addresses the anomaly problem that brings the system into an error state. Formally, the
analyzing historical data. We denote such a mechanisa agroblem can be formulated as below:
vertical approach Our study intends to investigate how to Problem 1: When a system is detected in an error state
exploit a horizontal view of the nodes for fault diagnosiqe.g. by applying model-based or data mining based techsiqu
which is considered as horizontal approachWe believe both mentioned in Section Il), the objective of anomaly locdiiza

II. RELATED WORK

IIl. PROBLEM FORMULATION



TABLE |
FEATURE LIST

Recovery

Features Description

CPU.System | Percent CPU in Kernel

CPU.User Percent CPU in User

CPU.Wait Percent CPU blocked for 1/0

Memory_Free | Amount of free memory and swap space (KB)

Tolerance Pageln Number of Pages in (KB/s)
PageOut Number of Pages out (KB/s)
10_Write Device writes per second
IO_Read Device reads per second
Fig. 1. System State Transitions 10_Svct Average service time (ms)
Packetin No. of packets into the network per second
PacketOut No. of packets out of the network per second

is to identify the nodes that cause the problem by externally
observing the system behaviors.

We have made two observations on anomaly localizationfh Feature Collection
large-scale clusters. First, in a cluster, the nodes peify  Feature collection is the prerequisite for data analysis. A
comparable activities should exhibit similar behaviorsgh anomaly typically induces changes in multiple subsystems
performance computing clusters often have such a propei#y,the node, including CPU, memory, I/O and network. For
and examples include those used for parameter sweep @ample, a memory leaking may affect the amount of free
plications [24], cluster management tools, and Web serv@lemory and the CPU utilization rate. An 1/O operation to a
farms [18]. Second, in most cases, the majority of the nodegalfunctioning disk may lead to page fault and a long CPU
are functioning normally since faults are rare events. Basgile time. In order to detect a wide variety of anomalies- cur
on these observations, we aim at finding out a small set [antly we use four system calls, nameimstat mpstaf iostat
nodes that exhibit different behaviors from the majoritisT and netstaf to collect eleven features in the operating system

involves three key questions: layer. A short description of these features are summaiized
1) How to collect a variety of features for effectivelyTable I.
representing node behaviors? Let m be the number of features collected frenmodes. To

2) How to extract the most significant features for anomabapture the tendency of these featukesnapshots are sampled
localization from the potentially overwhelming mass oper node during a given time window. As shown in Figure 2,
data? there aren matricesX'(i = 1,2,---,n), each representing

3) How to quickly identify faulty nodes? the feature matrix collected from thieh node. In the matrix

The answers to these questions ultimately determine tAg, the elementj, ; denotes the value of featutecollected

coverage of anomalies and the efficiency of anomaly locat thejth snapshot, where < j <k and1 < h < m. _
ization. To facilitate data analysis, we reorganize each malfix
into a long(m x k) column vectorz® = [z% | 2% 5--- 2% ,]7.
IV. L oCALIZATION METHODOLOGY Together, vsle obt:)alin a single large ngtrlikl: v m’k]
Our proposed localization method consists of three steps:
feature collection, feature extractiorand outlier detection X =[xt a? - 2" 1)

Figure 2 gives an overview of our localization methodologyhe transformation from a multiway matrix to a single large

Th‘? method can be triggered either pgriodically With a P'atrix makes it easy to diagnose anomalies across different
defined frequency or by a system monitoring tool in case %des.

unusual events.

« Feature collection:It is responsible for collecting an B. Feature Extraction
uniform set of features from the nodes and assembling thewiith the features collected from all the nodes, a simple
data into a matrixX. Here, afeatureis defined as an in- method is to compare them for anomalies. However, such
dividual measurable property of the node being observesl.simple comparison cannot provide an accurate result. In
In this paper, a variety of features are collected from thgarticular, fluctuation and noise may exist in feature value
system, including CPU, memory, I/O, and network.  For instance, some features could have large variancesgamon

« Feature extraction:It processes the collected data byhe nodes; some features could be close to each other. Even
extracting the most significant features for data analysigorse, the fluctuation and noise may propagate across teultip
A principal component analysis algorithm is applied t@amples, thereby impacting the accuracy of anomaly lazaliz
generate a lower dimensional matiik tion. Feature selectiorand feature extractiorare two popular

« Outlier detectionIt identifies a set of nodes that are “farmethods to solve the problem.
away” from the majority. A cell-based algorithm is used Feature selectioris a process to select an optimal subset
to quickly identify the outliers by using a distance metricof the original features based on some criteria, such as
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Fig. 2. Anomaly Localization. Heren is the number of features, is the number of nodes, aridis the number of samples collected per node

localization accuracy [11]. However, feature selectioquiees

a training process (i.e. supervised learning). Besidestufe X
selection is time consuming. For instance, an optimal sele
requires an exhaustive search of all the possible subs
features. Furthermore, it generally works well with irrelat
features. As mentioned earlier, a fault may be reflected ih mu Fig. 3. Feature Extraction

tiple features. In other words, these features are notiragit,

thereby greatly limiting the effectiveness of feature stida.

Different from feature selectiorfeature extractiontrans- different scales, e.g. memory size is generally a large mumb
forms the original feature space into a space of fewer dimewhile CPU utilization is usually less than0. To transform the
sions while still preserve the most significant variancehia t data into a uniform scale, every datan the matrix X' is first
data [11]. The data presented in a low dimensional subspdt¥malized across columns. By doing $9,is normalized to
are easier to separate into different classes [21]. Fyrteer X'. After this step, feature values are controlled in the range
ducing the dimensionality of the data can significantly cedu between0.0 and 1.0. Next, the data from different nodes in
time complexity for data analysis. the normalized matrixX’ should be adjusted inteero mean

In this work, we apply Principal Component Analysis (PCARNd the zero-meaned data is organized in the maffix
for feature extraction. PCA is a linear transformation that Theé PCA method first calculates the covariance matrix of
maps a given set of data points onto new axes (i.e. princip?éf/3
components) ordered by the amount of data variance that they 1
capture [21]. One advantage of PCA is that it is unsupervised C= EX"X"T, (2)

learning, meaning that we do not need to know the data Iabel,I h lcul he Ei | 6f and h .
e.g. whether it is normal or abnormal. Therefore it works t then calculates the Eigenvalues Of and sorts them in

well for unknown fault patterns. Another advantage of PCA descenting orderd; > Ay > .-+ > Amxi. The firsts

is that the features in the new space are irrelevant from eaeagenvalues that satisfy the following requirement aresefo

Normalization XI Zero Mean i PCA Y
X (mxk)x

it X

(mexk Yxn (mxkYxn

other. This property ensures that the information loss e@us )HEDY
. . . =1 "
by transforming is limited. T > t, 3)
Our detailed steps of feature extraction are illustrated in it i
Figure 3. Before using PCA,r@ormalizationprocess is applied wheret < 1 is a predefined threshold.
to preprocess the data. We consider that all the features aré projection matrixW = [wy,ws,...,ws] iS determined,

equally important. Note that the collected data may hawveherew; is the Eigenvector corresponding to thé largest



Eigenvalues);. It is also called theth principal component. of an outlier. Then the following three properties are thiesu

The matrix X" is then projected into a new matriX = for outlier detection [12]:
[Y1, Y25 - - - Ynl: « If there are< M objects in one cell, none of the objects
in this cell is an outlier.
yi = WTx;’ 4) « If there are< M objects in one cell plus thé, layer ,
none of the objects in this cell is an outlier.
wherey; is a s dimensional vectors < m x k. « If there are< M objects in one cell plus thé, layer

The complexity of computing all the eigenvectors and and theL, layer , every objects in this cell is an outlier.
eigenvalues ofC is O((m x k)*). Here, we only need t0  The data spac¥,,, is then separated into two subsess:
calculate the firsts eigenvectors and eigenvalues. A neurgthe abnormal set) and; (the normal set). For each noge
network based method can be applled for the calculatior, W!h the abnormal SeS(), we calculate its anoma|y score:

a linear complexity and fast convergence [30].
n = d(yi, p), (6)

C. Outlier Detection where: is the mean value of the elements in the normal set

The final step is to identify a subset of nodes that are dissif:- The anomaly score of a node reflects its fault severity; and
ilar from the majority. In the field of data mining, these nsdethe node with a high score has a high probability of causing
are callecbutliers Simply put, an outlier is a data point whichthe anomaly problem. Finally, the abnormal sgtis sorted
is quite different from other data according to some criterin @ descenting order of anomaly scores to system managers.
[12]. In this paper, we measure the dissimilarity betweea tw V. PRELIMINARY EVALUATION

data pointsy, andy; by using Euclidean distance: A. Evaluation Methodology

In this section, we present our preliminary studies. Our
- )2 testbed is a 47-node Sunwulf UNIX cluster at the Computer
A(yar32) Z(y“ Vo) ®) Science Department of lllinois Institute of Technique. lEac
node is a SUN Blade workstation 100 with one UltraSparc-lle
wheres is the dimension of the data points. 500MHz CPU, 256K L2 cache and 128MB main memory. The
An objecto in a data sefl" is called aDB(p, d) outlier if underlying interconnect is a 100Mbps Ethernet. The system
at least fractiorp of the objects iril” lies greater than distanceruns the SunOS 5.9 operating system. The machine is irstalle
d from o. Bothp andd are predefined parameters. To detect\gith SUN HPC Cluster Tools 4.0 which includes a high-
distance-based outlier, there is no need to obtain a disioib performance, thread-safe, and multi-protocol implenterna
or a probability model of the given data set, thereby makingf the Message Passing Interface (MPI). We are currently in
it suitable for anomaly detection in large-scale system&lwh the process of conducting more experiments on larger scale
generally have very complex failure modes. systems at national supercomputing centers, and will ptese
A straight-forward algorithm is to calculate the number afe results in our future publication.
neighbors within the distance dffor each object to determine A parameter sweep application is run on the cluster by using
whether it is an outlier or not. This naive algorithm, howevea master-slave model. A master node generates inputs (i.e. a
has the complexity oD (sn?), wheres is the dimensionality 2000 x 2000 matrix and a 2000-dimensional vector) and sends
andn is the number of objects in the data set. Obviously, them to 46 workers; each worker solves a set of dense linear
is not efficient, especially when there are a large number @fuations by using Gaussian Elimination method [31] with
nodes (e.g. tens of thousands to hundreds of thousandsy inttfe input data and then sends the results back to the master.
system. Therefore, in this computing environment, except for the
We use ecell-based algorithnior outlier detection [12]. A master node, all the worker nodes are performing comparable
cell-based algorithm is an optimized outlier detectionhmdt tasks, thereby expecting to exhibit similar behaviors.
which has a complexity oD(c®* + n), wherec is a small We manually injected faults into the system by generating
constant. Note that after the PCA processings quite small faulty threads in the background (separate from the afjdica
(e.g. generally smaller than 5). Hence, the cell-basedigtigo threads), and tested whether our localization method can
has a complexity that is linear with respectriptherefore it effectively identify these faults. In our experiments, fiypes
is more time efficient as compared to a naive outlier detactiof faults were tested:
algorithm. « Memory leaking On a randomly selected node, besides
On the new data spad€ ., our cell-based algorithm works the normal computation thread, we introduced a thread
as follows. First, the data space is partitioned into cefls 0 to generate memory leaking on the node, i.e. the thread
length I = ﬁ. Each cell is surrounded by two layers: continues consuming memory without releasing it peri-
(1) the first layer denoted a&; includes those immediate odically.
neighbors, and (2) the second layer denoted.asncludes o Unterminated CPU intensive thread&n injected thread
those additional cells within three cells of distance. Létbe competes for the CPU resource with the normal compu-
the maximum number of objects within the d-neighborhood tation thread on a node.

S

i=1



« High frequent 1/O operationsOn a randomly selected

node, we introduced an I/O intensive thread which kee| 2
reading and writing a large number of bytes from its disk \
« Network volume overflawfwo randomly selected nodes T @ |
keep transferring a large number of packets betwe: el
them.
« Deadlock It is realized by blocking the process in a nod¢ I

for system resources.

Two accuracy metrics were used to evaluate the effectiv
ness of our localization method: (i3lse positivef,, the rate 8r
of false alarms, and (Zplse negativef,,, the rate of missed
faults. A good localization method should provide a low ealu L L A I R R R
(closer t00.0) for both metrics.

The feature collection procedure was triggered every :
seconds. On each node, eleven features (see Table 1) and five
samples were collected per node, which makes the matrix Fig. 5 Resu_lts of_ localizing unterminateq CPU intensive_mis, where the
of the size Of(ll ¥ 5) « 46. The threshold in Equation 3 was one in the ellipse is correct and the one in the rectangle a&se falarm.
set as0.7. The parametep andd for outlier detection were
set top = 0.9565 andd = 0.40, whereo is the variance ot

[11]. In our experiments, we found that= 2 usually works 4 =
well. Note that the number of snapshots and the frequency N .
take snapshots may influence the coverage and the effciel I
of anomaly localization. A detailed sensitivity study oke 1ol

parameters will be part of our future work.
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that our method is able to correctly identify all the faulty
nodes. In terms of false positive, we notice an interesting
phenomenon: the false positive rate is low (e<g.0.1) on
Fig. 4. Results of localizing memory leaking. Two outliers aketected, 10Calizing memory leak, high frequency I/O operations and
where the one in the ellipse is correct and the one in thenglgds a false deadlock, while it is relatively high (e.g. betweénl5 and
alarm. 0.20) on localizing unterminated CPU intensive threads and
We conducted two sets of experiments. In the first set rfatwork v_olume pverflow._ The _appllcatlon that we used in
e experiments is CPU-intensive. As a consequence, some

experiments, we randomly injected a single fault into th | nod hich tivel di ati

system. In the second set, we introduced multiple faults ingorma no esl W.d'c tilredac 'er yltengage 'Ilﬂ C?Tpu al on mfay

the system simultaneously. e erroneously identified as faulty ones. The false alarms fo
network volume overflow might come from fault propagation

B. Results on A Single Fault through the networks [25].
Figure 4-8 present the results by using our method on aBased on the results, we then classified the faults into two
single injected fault. On each plot, th€ axis represents the groups: Type #1 with low false positive (i.e. 0.1) and Type
1st principal component, and the Y axis denotes thel #2 with relatively high false positive (i.e> 0.1)). In other
principal component. The points in the ellipse are trueiexst) words, Type #1 includes memory leaking, high frequent 1/0
while those in the rectangle are false alarms. operations, and deadlock faults. Type #2 includes the gault
Table Il summarizes the accuracy in this set of experimentsith unterminated CPU intensive threads and network volume
As we can see, false negativg, is always 0.0, meaning overflow.
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Fig. 7. Results of localizing network volume overflow, whee bne in the Fig. 9. Results of localizing simultaneous Type #1 faults (memeaking

ellipse is correct and the one in the rectangle is a falsemalar and high frequent 10 operation). The points in the ellipse e outliers.
The left point is from the node injected with high frequer® Ibperations,
and the right one is from the node injected with a memory leakimgr. Both
are true outliers.
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TABLE I

ACCURACY OF ANOMALY LOCALIZATION FOR THE 15t SET Fig. 10. Results of localizing simultaneous Type #1 and #&dgmemory

leaking and network volume overflow). The points inside of &ligpse are
true outliers caused by network volume overflow, the pointhie tectangle

Fault(s) [ fo [ fo is a false alarm, and the point in the triangle is the missed fzadused by
memory leak 0 [0.02 memory leaking.
unterminated CPU intensive thread<D 0.2
high frequency 1/O operations 0 | 0.06 TABLE llI
network volume overflow 0 0.15 ACCURACY OF ANOMALY LOCALIZATION FOR THE 2nd SET
deadlock 0 0.06
Fault(s) [ fn T /o
memory leak 0 0
: & high frequency I/O operation
C. Results on Multiple Faults memory leak 03T 015
In this set of experiments, we randomly injected several & network volume flow
faults into multiple worker nodes simultaneously. Threstde unterminated CPU intensive threadsd 0.2
were conducted: (1) injecting two Type #1 faults; (2) injegt & network volume flow

a Type #1 fault and a Type #2 fault; and (3) injecting two Type

#2 faults. The results are showed in Figure 9-11. The points

in the ellipse are true outliers, those in the rectangle alsef zero. With mixed faults injected into the cluster, our metho

alarms, and the ones in the triangle are missed faults. may fail to localize some true outliers caused by Type #1
Table 1l lists the accuracy results for the second séults. For instance, as shown in Figure 10, our method did no

of experiments. It indicates that our method is effective ifind the memory leaking error injected. However, we shalenot

localizing simultaneous Type #1 faults, as bgthand f,, are that the node with memory leaking error does show different



is performed at a central location. Such an approach cannot
25 ‘ ‘ i ‘ ‘ - ‘ scale for systems with a large number of nodes. Again, arbette
* 1 solution is to divide-and-conquer by partitioning the syst
resources. We are currently working on extending this rebea
by developing a distributed localization system.
T G | Next, in the current work, the features are only collected in
O 1 the operating system layer. We plan to include more features
o @) . 1 from both the hardware layer and the application layer. By
I - F i combining a wide range of features from different computing
“ layers, we believe it can assist in localizing faults ociogr
1 in different layers. We are also in the process of investigat
T NN B o other kinds of feature extraction methods, such as Indegend
component analysis (ICA) and Locally Linear Embedding
(LLE) [33] for better localization quality.
Lastly, the paper is focused on anomalies that lie within a
Fig. ;1. Results of localizing simultaneous Type #2 fau_ltﬂtaéunin_ated node, such as the faults originated from node memory, node
CPU intensive threads and network volume overflow). The ifiedtoutliers, CPU, etc. Troubleshooting anomalies occurring betweeesiod
including both true outliers and false alarms, spread adiesspace. !
is a challenging problem, and there are a number of active
research projects on this topic [29], [5]. In order to idBn&a
behaviors in the plot than the others. This information mayariety of abnormal behaviors in a system, we believe it @n b
be used by system managers for further investigation. Oapproached by combining different localization methodgwi
method is able to detect simultaneous Type #2 faults, and #rch being applied for identifying a specific set of anonsalie
accuracy is similar to the case where only one Type #2 fault
was injected. In summary, we conclude that mixed Type #1 VII. SUMMARY

and #2 faults are difficult to identified; and multiple Type #2 \yo have presented an approach for anomaly localization

faults could lead to a high cost for finding the real faults. large-scale clusters by exploiting a horizontal view o t

VI. DISCUSSION system. The proposed method consists of three interrelated
steps:feature collectionto acquire sufficient features to rep-
resent node behaviorgature extractiorvia PCA to reduce
the data dimensionality for efficient data analysis, antlier
ﬁetectionvia the cell-based algorithm to find out faulty nodes
In a fast way. Our preliminary study has demonstrated that

Our method is intended to work with existingertical
based detection technologies, rather than replacing thsm.
working example, we can apply a data mining based meth
such as [7] to predict when the underlying system wi

experience a critical event (e.g. a hardware or softwaharé&i . L . : : .
P (g & this localization method is capable of discovering a varadt

and then utilize the proposédubrizontalmethod to find out the . : L
. . . faults, with both the false negative rate and the false pesit
potential source of the problem. Such an integration can ng

e controlled belov.20.

only tell system managers where to fix the problem, but alsd o . e
allow application users to take appropriate actions foitfau The Paper 1 mtended. to point out a potential d|rect|9n f_or
management of their applications [10]. gddressmg the challenging prob_Iem on anomaly Ioc.:.al_matlo
Similar to other automatic approaches, our localizatio large-scale clusters. The practlcgl usage and the fmita
method is also subjected to false alarms and missed de‘[eptiéj the method are also presented in the paper.
although the error is quite low (i.e< 0.20). This problem
could be alleviated by usingupervisednethods. Nevertheless,
we believe that a more promising way for anomaly localizatio Zhiling Lan’s work was supported in part by NSF grants
is to involve the human in data analysis. As pointed earli€SR-0720549, NGS-0406328, and National Computational
the information produced by our localization method can t&cience Alliance with NSF PACI Program. We would like to
sent to a system administrator for further investigatiothgd thank research members in the Scalable Computing Systems
research projects have also pointed out the importance Lafboratory at lllinois Institute of Technology for theirdde
keeping the human in failure diagnosis [32]. and comments.

Our study has some limitations that remain as our future
work. First, our method exploits similarity among the nodes REFERENCES
performlng co_mparable 'FaSkS for |OC§\|!Z|ng anomf_;\hes.ddaen [1] Y. Liang, Y. Zhang, et al., “BlueGene /L Failure Analysssd Models”,
it cannot bedirectly applied for localizing anomalies among™~ pyoc. of DSN0G2006.
the nodes with wildly different behaviors. Nevertheless, [@ G. Hoffmann, F. Salfner, M. Malek, “Advanced Failure Pigtbn in

possible approach is to divide the system resources intgComplex Software SystemsProc. of SRDS2004. .
R. Sahoo, A. Oliner, et al., “Critical Event Predictionrf Proactive

groups of “S|r_n_|lar” _nodes and apply our method on ea " Management in Large-scale Computer ClusteRsbc. of KDD 2003pp.
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