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Abstract— A critical problem facing by managing large-scale
clusters is to identify the location of problems in a system
in case of unusual events. As the scale of high performance
computing (HPC) grows, systems are getting bigger. When a
system fails to function properly, health-related data are collected
for troubleshooting. However, due to the massive quantities of
information obtained from a large number of components, the
root causes of anomalies are often buried like needles in a
haystack. In this paper, we present a localization method to
automatically find out the potential root causes (i.e. a subset
of nodes) of the problem from the overwhelming amount of data
collected system-wide. System managers can focus on examining
these potential locations, thereby significantly reducing human
efforts required for anomaly localization. Our method consists
of three interrelated steps: (1) feature collection to assemble a
feature space for the system; (2)feature extraction to obtain the
most significant features for efficient data analysis by applying
the principal component analysis (PCA) algorithm; and (3)outlier
detection to quickly identify the nodes that are “far away”
from the majority by using the cell-based detection algorithm.
Preliminary studies are presented to demonstrate the potential of
our method for localizing anomalies in a computing environment
where the nodes perform comparable tasks.

I. I NTRODUCTION

As the scale of high performance computing (HPC) grows,
the new generation of HPC systems contain tens-of-thousands
to hundreds-of-thousands of components. For systems of this
scale, reliability becomes a major concern as the system-
wide Mean-Time-Before-Failure (MTBF) decreases dramati-
cally with the increasing count of components [38].

Recognizing the importance of system reliability, a number
of methods have been presented to detect when a system
fails to function properly [1]-[8]. For instance, a model-based
predictive method can be applied to trigger an alert when a
deviation from the derived model is observed [17],[37],[36];
several research projects have exploited data mining tech-
niques to detect critical events in large-scale clusters by
capturing and discovering fault patterns [3].While it is useful
for system management by detecting when the system functions
abnormally, it is equally important to find out which part of
the system is the source of the problem. With the root cause
information in hand, system managers know where to fix the
problem and application users can take corrective or preventive
actions for their applications. In this paper, the process of
determining the source of the problem in a large-scale cluster
is regarded asanomaly localization.

Anomaly localization is a challenging problem, especially
in large-scale systems composed of hundreds to thousands
of components. Over the past decades, a number of system

monitoring tools, including both open-source packages as well
as commercial solutions [26]-[28], have been deployed for col-
lecting performance and health data across the entire system.
The data collection contains a wealth of information about
normal and abnormal behaviors. However, due to the massive
quantities of information collected from a large number of
system components, the root causes of anomalies present in the
data are often buried like needles in a haystack. Traditionally,
human operators are responsible to check the data for possible
problems by using their experience and expertise. Manual pro-
cessing is time consuming and error-prone. More importantly,
it does not scale.A desirable approach is to automatically
distill the data and identify the potential root causes of the
problem for system managers.Rather than working on tons of
raw data collected, system managers can focus on examining
these potential locations, thereby significantly reducinghuman
efforts required for anomaly localization.

In this paper, we present an automatic method for anomaly
localization in large-scale clusters, especially those used for
high performance computing. Based on the observation that
the nodes perform comparable activities generally exhibitsim-
ilar behaviors, the proposed method explores such a similarity
to find a small set of nodes that are substantially different from
the majority. The result can be used as the candidate for further
investigation by system managers. Our method consists of
three steps: (1)feature collectionto assemble a feature space
for the system (generally has high dimensionality to capture
a wide variety of system features); (2)feature extractionto
obtain the most significant features out of the original feature
space for efficient data analysis by applying the principal
component analysis (PCA) algorithm [11]; and (3)outlier
detection to quickly identify the nodes that are “far away”
from the majority by using the cell-based detection algorithm
[12]. PCA is used to significantly reduce time complexity for
data analysis in a large data set by reducing its dimensionality,
and the cell-based algorithm enables us to quickly identifythe
outliers in the data set. Together, these interrelated steps aim
at localizing anomalies being “buried” in massive quantities
of data quickly and effectively.

We have tested our method with a number of faults in a com-
puting environment where the nodes are used for a parameter
sweep simulation [24]. Under eight different fault modes, the
proposed localization method is capable of discovering every
fault injected, except in one case where the false negative rate
is higher than zero. Besides, the false positive rate is always
controlled below0.20, meaning that less than20% of potential



root causes are false alarms.
Different from existing studies using historical data for fault

analysis [1], [4], [36], [7] ( which we denote as being based on
avertical viewof the system), our method exploits ahorizontal
view of the system for anomaly localization. Note that the
proposed method is not intended to replace existing fault
prediction techniques based on a vertical view, but rather to
work with them. A fault prediction mechanism (e.g. a model-
based or data mining based method [1]-[8]) can be used to
determine when the system fails to function properly, while
this work can be used to further pinpoint the potential location
of the problem.

The rest of the paper is organized as follows. Section II
provides a brief discussion of the related work. In Section III,
we describe the anomaly localization problem, followed by a
detailed description of our three-step method in Section IV.
Section V presents our preliminary experiments. Section VI
points out the practical usage and limitations of the proposed
method. Finally, we conclude the paper in Section VII.

II. RELATED WORK

Diagnosing system failures has been studied extensively
over the past decades. Existing diagnostic techniques can be
broadly classified as model-based or data mining based. A
model-based approach derives a probabilistic or analytical
model of the system. A warning is triggered when a deviation
from the model is detected [36]. For example, Gross et al.
have presented an adaptive statistical data fitting method called
MSET to forecast the system dependability [37]. In [16], a
naive Bayesian based algorithm is used to predict disk drive
failures. In [17], a specific analytical model is developed for
quickly detecting anomalies in I/O systems.

Data mining, in combination with intelligent systems, fo-
cuses on learning and classifying known faults without con-
structing an accurate model ahead of time. For instance,
the group at the RAD laboratory applies statistical learning
techniques for failure diagnosis in Internet services. In [34],
Vilalta and Ma investigate frequent itemset mining for failure
prediction in a networked system. In [6], Liang et al. examine
several statistical based prediction techniques (e.g. spatial or
temporal correlation among RAS events) for failure forecast-
ing in a Blue Gene/L system. In our own previous works
[7], we have investigated a meta-learning based method for
detecting when a cluster may experience failures in the near
future by adaptively combining the merits of various data-
mining techniques.

Both model-based and data mining based methods mainly
focus on predicting when the system behaves abnormally,
while our work emphasizes on identifying where the anomaly
is located, i.e. a subset of faulty nodes. Hence, our work
complements existing prediction studies. Further, the major-
ity of existing research addresses the anomaly problem by
analyzing historical data. We denote such a mechanism asa
vertical approach. Our study intends to investigate how to
exploit a horizontal view of the nodes for fault diagnosis,
which is considered asa horizontal approach. We believe both

approaches should be combined and coordinated for improving
fault diagnosis in large-scale systems.

The work in [18] is the most closely related work to ours.
It also explores a horizontal approach for problem diagnosis.
While it focuses on diagnosing application bugs, our work
aims at identifying faulty nodes that may cause system fail-
ures. In addition, our work uses different techniques for data
analysis. In [18], the authors apply dynamic instrumentation
to collect function-level traces from each application process
and then use a pairwise distance comparison to identify faulty
application process(es). In our study, we investigate a three-
step method, including both PCA for feature extraction and
the cell-based algorithm for outlier detection.

PCA is a well-studied method, and has been applied in many
fields for dimension reduction [11]. Our work is inspired by
[21], [29]. Both studies use the principal component analysis
method to detect anomalies in network-wide traffic. Our work
differs from these studies at two aspects. First, we target local-
izing faulty nodes in large-scale systems such as those usedfor
high performance computing. In doing so, our feature space
is quite different from the ones used in [21], [29]. Secondly,
they apply classification techniques (i.e. a supervised learning)
to identify network anomalies, while we investigate the useof
an optimized outlier detection method (i.e. an unsupervised
learning) to find out outliers. To the best of our knowledge,
we are among the first to investigate a systematic methodology
for anomaly localization in HPC systems.

III. PROBLEM FORMULATION

Before formulating the problem, we first describe two terms:
• Failure: According to the IEEE standard 610.12-1990, a

failure represents the inability of a system to perform
its required functions within a specified performance
requirement.

• Fault: A fault is defined as an abnormal condition that
may cause a reduction in, or loss of, the capability of a
functional unit to perform a required function [20].

In [19], the authors show system state transitions between
faults and failures (see Figure 1). In this model, a system
has three different states, namelyGood, Error, andFailed. A
fault causes the system to transit from a good state to an error
state. The system in an error state generally still functions,
probably under a degraded performance. The usage of the
system in the error state brings the system to a failed state.In
general, a latency exists between the error state and the failed
state. During the latency, the system may transit back to the
good state via a proper fault tolerance mechanism. Finally,the
failed system returns back to the good state via some recovery
mechanism.

Our aim is to troubleshoot the system in the error state by
finding out the root cause of the fault (so called “anomaly”)
that brings the system into an error state. Formally, the
problem can be formulated as below:

Problem 1: When a system is detected in an error state
(e.g. by applying model-based or data mining based techniques
mentioned in Section II), the objective of anomaly localization



Fig. 1. System State Transitions

is to identify the nodes that cause the problem by externally
observing the system behaviors.

We have made two observations on anomaly localization in
large-scale clusters. First, in a cluster, the nodes performing
comparable activities should exhibit similar behaviors. High
performance computing clusters often have such a property,
and examples include those used for parameter sweep ap-
plications [24], cluster management tools, and Web server
farms [18]. Second, in most cases, the majority of the nodes
are functioning normally since faults are rare events. Based
on these observations, we aim at finding out a small set of
nodes that exhibit different behaviors from the majority. This
involves three key questions:

1) How to collect a variety of features for effectively
representing node behaviors?

2) How to extract the most significant features for anomaly
localization from the potentially overwhelming mass of
data?

3) How to quickly identify faulty nodes?
The answers to these questions ultimately determine the

coverage of anomalies and the efficiency of anomaly local-
ization.

IV. L OCALIZATION METHODOLOGY

Our proposed localization method consists of three steps:
feature collection, feature extraction, and outlier detection.
Figure 2 gives an overview of our localization methodology.
The method can be triggered either periodically with a pre-
defined frequency or by a system monitoring tool in case of
unusual events.

• Feature collection: It is responsible for collecting an
uniform set of features from the nodes and assembling the
data into a matrixX. Here, afeatureis defined as an in-
dividual measurable property of the node being observed.
In this paper, a variety of features are collected from the
system, including CPU, memory, I/O, and network.

• Feature extraction:It processes the collected data by
extracting the most significant features for data analysis.
A principal component analysis algorithm is applied to
generate a lower dimensional matrixY .

• Outlier detection:It identifies a set of nodes that are “far
away” from the majority. A cell-based algorithm is used
to quickly identify the outliers by using a distance metric.

TABLE I

FEATURE L IST

Features Description
CPU System Percent CPU in Kernel
CPU User Percent CPU in User
CPU Wait Percent CPU blocked for I/O
Memory Free Amount of free memory and swap space (KB)
PageIn Number of Pages in (KB/s)
PageOut Number of Pages out (KB/s)
IO Write Device writes per second
IO Read Device reads per second
IO Svct Average service time (ms)
PacketIn No. of packets into the network per second
PacketOut No. of packets out of the network per second

A. Feature Collection

Feature collection is the prerequisite for data analysis. An
anomaly typically induces changes in multiple subsystems
in the node, including CPU, memory, I/O and network. For
example, a memory leaking may affect the amount of free
memory and the CPU utilization rate. An I/O operation to a
malfunctioning disk may lead to page fault and a long CPU
idle time. In order to detect a wide variety of anomalies, cur-
rently we use four system calls, namelyvmstat, mpstat, iostat
andnetstat, to collect eleven features in the operating system
layer. A short description of these features are summarizedin
Table I.

Let m be the number of features collected fromn nodes. To
capture the tendency of these features,k snapshots are sampled
per node during a given time window. As shown in Figure 2,
there aren matricesXi(i = 1, 2, · · · , n), each representing
the feature matrix collected from theith node. In the matrix
Xi, the elementxi

h,j denotes the value of featureh collected
at thejth snapshot, where1 ≤ j ≤ k and1 ≤ h ≤ m.

To facilitate data analysis, we reorganize each matrixXi

into a long(m×k) column vectorxi = [xi
1,1 xi

1,2 · · ·x
i
m,k]T .

Together, we obtain a single large matrix:

X = [x1, x2, · · · , xn] (1)

The transformation from a multiway matrix to a single large
matrix makes it easy to diagnose anomalies across different
nodes.

B. Feature Extraction

With the features collected from all the nodes, a simple
method is to compare them for anomalies. However, such
a simple comparison cannot provide an accurate result. In
particular, fluctuation and noise may exist in feature values.
For instance, some features could have large variances among
the nodes; some features could be close to each other. Even
worse, the fluctuation and noise may propagate across multiple
samples, thereby impacting the accuracy of anomaly localiza-
tion. Feature selectionand feature extractionare two popular
methods to solve the problem.

Feature selectionis a process to select an optimal subset
of the original features based on some criteria, such as



Fig. 2. Anomaly Localization. Here,m is the number of features,n is the number of nodes, andk is the number of samples collected per node

localization accuracy [11]. However, feature selection requires
a training process (i.e. supervised learning). Besides, feature
selection is time consuming. For instance, an optimal selection
requires an exhaustive search of all the possible subsets of
features. Furthermore, it generally works well with irrelevant
features. As mentioned earlier, a fault may be reflected in mul-
tiple features. In other words, these features are not irrelevant,
thereby greatly limiting the effectiveness of feature selection.

Different from feature selection,feature extractiontrans-
forms the original feature space into a space of fewer dimen-
sions while still preserve the most significant variance in the
data [11]. The data presented in a low dimensional subspace
are easier to separate into different classes [21]. Further, re-
ducing the dimensionality of the data can significantly reduce
time complexity for data analysis.

In this work, we apply Principal Component Analysis (PCA)
for feature extraction. PCA is a linear transformation that
maps a given set of data points onto new axes (i.e. principal
components) ordered by the amount of data variance that they
capture [21]. One advantage of PCA is that it is unsupervised
learning, meaning that we do not need to know the data label,
e.g. whether it is normal or abnormal. Therefore it works
well for unknown fault patterns. Another advantage of PCA
is that the features in the new space are irrelevant from each
other. This property ensures that the information loss caused
by transforming is limited.

Our detailed steps of feature extraction are illustrated in
Figure 3. Before using PCA, anormalizationprocess is applied
to preprocess the data. We consider that all the features are
equally important. Note that the collected data may have

Fig. 3. Feature Extraction

different scales, e.g. memory size is generally a large number
while CPU utilization is usually less than1.0. To transform the
data into a uniform scale, every datax in the matrixX is first
normalized across columns. By doing so,X is normalized to
X ′. After this step, feature values are controlled in the range
between0.0 and 1.0. Next, the data from different nodes in
the normalized matrixX ′ should be adjusted intozero mean,
and the zero-meaned data is organized in the matrixX ′′.

The PCA method first calculates the covariance matrix of
X ′′:

C =
1

n
X ′′X ′′T , (2)

It then calculates the Eigenvalues ofC and sorts them in
a descenting order:λ1 ≥ λ2 ≥ · · · ≥ λm×k. The first s

eigenvalues that satisfy the following requirement are chosen:
∑s

i=1
λi

∑k×m

i=1
λi

≥ t, (3)

wheret < 1 is a predefined threshold.
A projection matrixW = [w1, w2, . . . , ws] is determined,

wherewi is the Eigenvector corresponding to theith largest



Eigenvaluesλi. It is also called theith principal component.
The matrix X ′′ is then projected into a new matrixY =
[y1, y2, . . . , yn]:

yi = WT x′′
i (4)

whereyi is a s dimensional vector,s < m × k.
The complexity of computing all the eigenvectors and

eigenvalues ofC is O((m × k)3). Here, we only need to
calculate the firsts eigenvectors and eigenvalues. A neural
network based method can be applied for the calculation, with
a linear complexity and fast convergence [30].

C. Outlier Detection

The final step is to identify a subset of nodes that are dissim-
ilar from the majority. In the field of data mining, these nodes
are calledoutliers. Simply put, an outlier is a data point which
is quite different from other data according to some criteria
[12]. In this paper, we measure the dissimilarity between two
data pointsya andyb by using Euclidean distance:

d(ya, yb) =

√

√

√

√

s
∑

i=1

(ya,i − yb,i)2 (5)

wheres is the dimension of the data points.
An objecto in a data setT is called aDB(p, d) outlier if

at least fractionp of the objects inT lies greater than distance
d from o. Both p andd are predefined parameters. To detect a
distance-based outlier, there is no need to obtain a distribution
or a probability model of the given data set, thereby making
it suitable for anomaly detection in large-scale systems which
generally have very complex failure modes.

A straight-forward algorithm is to calculate the number of
neighbors within the distance ofd for each object to determine
whether it is an outlier or not. This naive algorithm, however,
has the complexity ofO(sn2), wheres is the dimensionality
and n is the number of objects in the data set. Obviously, it
is not efficient, especially when there are a large number of
nodes (e.g. tens of thousands to hundreds of thousands) in the
system.

We use acell-based algorithmfor outlier detection [12]. A
cell-based algorithm is an optimized outlier detection method
which has a complexity ofO(cs + n), where c is a small
constant. Note that after the PCA processing,s is quite small
(e.g. generally smaller than 5). Hence, the cell-based algorithm
has a complexity that is linear with respect ton, therefore it
is more time efficient as compared to a naive outlier detection
algorithm.

On the new data spaceYs×n, our cell-based algorithm works
as follows. First, the data space is partitioned into cells of
length l = d

2
√

s
. Each cell is surrounded by two layers:

(1) the first layer denoted asL1 includes those immediate
neighbors, and (2) the second layer denoted asL2 includes
those additional cells within three cells of distance. LetM be
the maximum number of objects within the d-neighborhood

of an outlier. Then the following three properties are the rules
for outlier detection [12]:

• If there are< M objects in one cell, none of the objects
in this cell is an outlier.

• If there are< M objects in one cell plus theL1 layer ,
none of the objects in this cell is an outlier.

• If there are≤ M objects in one cell plus theL1 layer
and theL2 layer , every objects in this cell is an outlier.

The data spaceYs×n is then separated into two subsets:S0

(the abnormal set) andS1 (the normal set). For each nodeyi

in the abnormal setS0, we calculate its anomaly score:

η = d(yi, µ), (6)

whereµ is the mean value of the elements in the normal set
S1. The anomaly score of a node reflects its fault severity; and
the node with a high score has a high probability of causing
the anomaly problem. Finally, the abnormal setS0 is sorted
in a descenting order of anomaly scores to system managers.

V. PRELIMINARY EVALUATION

A. Evaluation Methodology

In this section, we present our preliminary studies. Our
testbed is a 47-node Sunwulf UNIX cluster at the Computer
Science Department of Illinois Institute of Technique. Each
node is a SUN Blade workstation 100 with one UltraSparc-IIe
500MHz CPU, 256K L2 cache and 128MB main memory. The
underlying interconnect is a 100Mbps Ethernet. The system
runs the SunOS 5.9 operating system. The machine is installed
with SUN HPC Cluster Tools 4.0 which includes a high-
performance, thread-safe, and multi-protocol implementation
of the Message Passing Interface (MPI). We are currently in
the process of conducting more experiments on larger scale
systems at national supercomputing centers, and will present
the results in our future publication.

A parameter sweep application is run on the cluster by using
a master-slave model. A master node generates inputs (i.e. a
2000×2000 matrix and a 2000-dimensional vector) and sends
them to 46 workers; each worker solves a set of dense linear
equations by using Gaussian Elimination method [31] with
the input data and then sends the results back to the master.
Therefore, in this computing environment, except for the
master node, all the worker nodes are performing comparable
tasks, thereby expecting to exhibit similar behaviors.

We manually injected faults into the system by generating
faulty threads in the background (separate from the application
threads), and tested whether our localization method can
effectively identify these faults. In our experiments, fivetypes
of faults were tested:

• Memory leaking: On a randomly selected node, besides
the normal computation thread, we introduced a thread
to generate memory leaking on the node, i.e. the thread
continues consuming memory without releasing it peri-
odically.

• Unterminated CPU intensive threads: An injected thread
competes for the CPU resource with the normal compu-
tation thread on a node.



• High frequent I/O operations: On a randomly selected
node, we introduced an I/O intensive thread which keeps
reading and writing a large number of bytes from its disk.

• Network volume overflow: Two randomly selected nodes
keep transferring a large number of packets between
them.

• Deadlock: It is realized by blocking the process in a node
for system resources.

Two accuracy metrics were used to evaluate the effective-
ness of our localization method: (1)false positivefp, the rate
of false alarms, and (2)false negativefn, the rate of missed
faults. A good localization method should provide a low value
(closer to0.0) for both metrics.

The feature collection procedure was triggered every 10
seconds. On each node, eleven features (see Table I) and five
samples were collected per node, which makes the matrixX

of the size of(11×5)×46. The thresholdt in Equation 3 was
set as0.7. The parameterp and d for outlier detection were
set top = 0.9565 andd = 0.4σ, whereσ is the variance ofY
[11]. In our experiments, we found thats = 2 usually works
well. Note that the number of snapshots and the frequency to
take snapshots may influence the coverage and the effciency
of anomaly localization. A detailed sensitivity study of these
parameters will be part of our future work.

Fig. 4. Results of localizing memory leaking. Two outliers aredetected,
where the one in the ellipse is correct and the one in the rectangle is a false
alarm.

We conducted two sets of experiments. In the first set of
experiments, we randomly injected a single fault into the
system. In the second set, we introduced multiple faults into
the system simultaneously.

B. Results on A Single Fault

Figure 4-8 present the results by using our method on a
single injected fault. On each plot, theX axis represents the
1st principal component, and the Y axis denotes the2nd

principal component. The points in the ellipse are true outliers,
while those in the rectangle are false alarms.

Table II summarizes the accuracy in this set of experiments.
As we can see, false negativefn is always 0.0, meaning

Fig. 5. Results of localizing unterminated CPU intensive threads, where the
one in the ellipse is correct and the one in the rectangle is a false alarm.

Fig. 6. Results of localizing high frequency I/O operations, where the one
in the ellipse is correct and the one in the rectangle is a false alarm.

that our method is able to correctly identify all the faulty
nodes. In terms of false positive, we notice an interesting
phenomenon: the false positive rate is low (e.g.< 0.1) on
localizing memory leak, high frequency I/O operations and
deadlock, while it is relatively high (e.g. between0.15 and
0.20) on localizing unterminated CPU intensive threads and
network volume overflow. The application that we used in
the experiments is CPU-intensive. As a consequence, some
normal nodes which are actively engaged in computation may
be erroneously identified as faulty ones. The false alarms for
network volume overflow might come from fault propagation
through the networks [25].

Based on the results, we then classified the faults into two
groups: Type #1 with low false positive (i.e.< 0.1) and Type
#2 with relatively high false positive (i.e.≥ 0.1)). In other
words, Type #1 includes memory leaking, high frequent I/O
operations, and deadlock faults. Type #2 includes the faults
with unterminated CPU intensive threads and network volume
overflow.



Fig. 7. Results of localizing network volume overflow, where the one in the
ellipse is correct and the one in the rectangle is a false alarm.

Fig. 8. Results of localizing deadlock, where the one in the ellipse is correct.

TABLE II

ACCURACY OF ANOMALY LOCALIZATION FOR THE 1st SET

Fault(s) fn fp

memory leak 0 0.02
unterminated CPU intensive threads0 0.2
high frequency I/O operations 0 0.06
network volume overflow 0 0.15
deadlock 0 0.06

C. Results on Multiple Faults

In this set of experiments, we randomly injected several
faults into multiple worker nodes simultaneously. Three tests
were conducted: (1) injecting two Type #1 faults; (2) injecting
a Type #1 fault and a Type #2 fault; and (3) injecting two Type
#2 faults. The results are showed in Figure 9-11. The points
in the ellipse are true outliers, those in the rectangle are false
alarms, and the ones in the triangle are missed faults.

Table III lists the accuracy results for the second set
of experiments. It indicates that our method is effective in
localizing simultaneous Type #1 faults, as bothfn andfp are

Fig. 9. Results of localizing simultaneous Type #1 faults (memory leaking
and high frequent IO operation). The points in the ellipse are true outliers.
The left point is from the node injected with high frequent I/O operations,
and the right one is from the node injected with a memory leakingerror. Both
are true outliers.

Fig. 10. Results of localizing simultaneous Type #1 and #2 faults (memory
leaking and network volume overflow). The points inside of theellipse are
true outliers caused by network volume overflow, the point in the rectangle
is a false alarm, and the point in the triangle is the missed fault caused by
memory leaking.

TABLE III

ACCURACY OF ANOMALY LOCALIZATION FOR THE 2nd SET

Fault(s) fn fp

memory leak 0 0
& high frequency I/O operation
memory leak 0.13 0.15
& network volume flow
unterminated CPU intensive threads0 0.2
& network volume flow

zero. With mixed faults injected into the cluster, our method
may fail to localize some true outliers caused by Type #1
faults. For instance, as shown in Figure 10, our method did not
find the memory leaking error injected. However, we shall note
that the node with memory leaking error does show different



Fig. 11. Results of localizing simultaneous Type #2 faults (unterminated
CPU intensive threads and network volume overflow). The identified outliers,
including both true outliers and false alarms, spread acrossthe space.

behaviors in the plot than the others. This information may
be used by system managers for further investigation. Our
method is able to detect simultaneous Type #2 faults, and the
accuracy is similar to the case where only one Type #2 fault
was injected. In summary, we conclude that mixed Type #1
and #2 faults are difficult to identified; and multiple Type #2
faults could lead to a high cost for finding the real faults.

VI. D ISCUSSION

Our method is intended to work with existingvertical-
based detection technologies, rather than replacing them.As a
working example, we can apply a data mining based method
such as [7] to predict when the underlying system will
experience a critical event (e.g. a hardware or software failure),
and then utilize the proposedhorizontalmethod to find out the
potential source of the problem. Such an integration can not
only tell system managers where to fix the problem, but also
allow application users to take appropriate actions for fault
management of their applications [10].

Similar to other automatic approaches, our localization
method is also subjected to false alarms and missed detections,
although the error is quite low (i.e.≤ 0.20). This problem
could be alleviated by usingsupervisedmethods. Nevertheless,
we believe that a more promising way for anomaly localization
is to involve the human in data analysis. As pointed earlier,
the information produced by our localization method can be
sent to a system administrator for further investigation. Other
research projects have also pointed out the importance of
keeping the human in failure diagnosis [32].

Our study has some limitations that remain as our future
work. First, our method exploits similarity among the nodes
performing comparable tasks for localizing anomalies. Hence,
it cannot bedirectly applied for localizing anomalies among
the nodes with wildly different behaviors. Nevertheless, a
possible approach is to divide the system resources into
groups of “similar” nodes and apply our method on each
group. In addition, in our current design, the data analysis

is performed at a central location. Such an approach cannot
scale for systems with a large number of nodes. Again, a better
solution is to divide-and-conquer by partitioning the system
resources. We are currently working on extending this research
by developing a distributed localization system.

Next, in the current work, the features are only collected in
the operating system layer. We plan to include more features
from both the hardware layer and the application layer. By
combining a wide range of features from different computing
layers, we believe it can assist in localizing faults occurring
in different layers. We are also in the process of investigating
other kinds of feature extraction methods, such as Independent
component analysis (ICA) and Locally Linear Embedding
(LLE) [33] for better localization quality.

Lastly, the paper is focused on anomalies that lie within a
node, such as the faults originated from node memory, node
CPU, etc. Troubleshooting anomalies occurring between nodes
is a challenging problem, and there are a number of active
research projects on this topic [29], [5]. In order to identify a
variety of abnormal behaviors in a system, we believe it can be
approached by combining different localization methods with
each being applied for identifying a specific set of anomalies.

VII. SUMMARY

We have presented an approach for anomaly localization
in large-scale clusters by exploiting a horizontal view of the
system. The proposed method consists of three interrelated
steps:feature collectionto acquire sufficient features to rep-
resent node behaviors,feature extractionvia PCA to reduce
the data dimensionality for efficient data analysis, andoutlier
detectionvia the cell-based algorithm to find out faulty nodes
in a fast way. Our preliminary study has demonstrated that
this localization method is capable of discovering a variety of
faults, with both the false negative rate and the false positive
rate controlled below0.20.

The paper is intended to point out a potential direction for
addressing the challenging problem on anomaly localization
in large-scale clusters. The practical usage and the limitations
of the method are also presented in the paper.
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