
Proactive Fault Manager for High Performance Computing  
 

Yawei Li and Zhiling Lan 

Department of Computer Science 

Illinois Institute of Technology, Chicago, IL 60616 

{liyawei, lan}@iit.edu  

 

 

1. Introduction  
As the scale of high performance computing (HPC) 

grows, the failure rate of supercomputers also increases 

dramatically. For example, the mean-time-to-failure 

(MTTF) of the ASCI White system, which is 

composed of 8,192 CPUs, is only about 40 hours. 

Checkpoint/restart is the most pervasive fault-tolerance 

(FT) technique used in HPC, yet it suffers from severe 

performance degradation, enormous requirement of 

storage, and significant overhead of writing to disks.  

Furthermore, this reactive fault tolerance approach can 

not avoid long failure downtime, which is intolerable 

for performance-demanding applications. To address 

the performance issue incurred by failures and avoid 

the disadvantages associated with reactive solutions, 

we adopt the proactive fault management concept and 

propose a novel adaptive prevention manager (APM) 

for high performance computing, which is part of our 

proposed FT-Pro framework as shown in Figure 1.  

The APM aims at minimizing the total execution time 

of parallel applications, e.g. MPI applications, by 

proactively migrating or checkpointing suspicious 

process(es) based on the failure prediction.  

 
Figure 1.   APM in the FT-Pro Framework 

 This work makes two major contributions. First of 

all, a proactive fault management framework is 

proposed for high performance computing.  It targets 

general HPC applications on massively parallel 

systems with the objective to mitigate the application-

level computation loss caused by both hardware and 

software failures. Instead of maximizing dependability 

of critical systems or improving availability of 

business services in most related research works, this 

work emphasizes on optimizing the application’s 

performance that is the principle concern of HPC users. 

Secondly, a fault prevention manager is designed that 

adaptively takes suitable preventive actions based on 

the observation of the status of applications and 

resources. A novel evaluation scheme is proposed to 

either dynamically invoke process migration to avoid 

imminent failures or perform checkpointing to prevent 

unpredictable failures.  

 

2.  Adaptive Prevention Manager 
The APM is a crucial part in the FT-Pro 

framework. It consists of three major components: 

fault alarm, decision maker, and preventive actions. 

The fault alarm component collects the status 

information from the system and application monitors 

so as to forecast faults, which might be hardware-

related, software-related or resource exhaustion errors.  

The predicted faults will then be signaled to the 

decision maker component.  

The decision maker chooses a preventive action 

based on its evaluation of the performance gain and 

cost of each possible preventive action.  Currently, 

three possible actions are included in the APM: 

• No action. When the system is in a fault-free 

state, there is no need to take any action and it can 

avoid unnecessary overhead. This option 

optimistically eliminates any interruptions from 

fault handling. 

• Process migration: When a node is in a fault-

prone state, the process is migrated to another 

healthy node so as to avoid the potential severe 

failure.  

• Checkpointing:  Some failures may not be 

predicted at all. For these unpredictable failures, 

checkpointing is performed to save intermediate 

results so as to reduce the recovery cost associated 

with unpredictable failures. 

The design of gain/cost model is a challenging 

problem. A good tradeoff should be made between an 

aggressive solution that interrupts the running 

application as less as possible and a conservative 

solution that conducts preventive actions frequently to 

guarantee dependability.  We have designed a heuristic 

scheme (as shown in Figure 2) that always takes the 

best immediate solution so as to find the overall 

optimal solution for the problem, which is to minimize 

the execution time of the target application. In this 



scheme, the aggregated execution time of all the 

processes is used as the evaluation criterion. This is 

due to two major reasons: 1) Failure recovery and 

checkpointing involve all the processes while process 

migration only affects the suspicious process. 2) HPC 

users are charged by amount of service units (SU) used 

which are calculated based on total CPU time on most 

supercomputers or clusters.  

The preventive action component runs in the 

background as a multi-threaded daemon. It is triggered 

by decision maker and cooperates with the target 

application through callback interface to carry out 

actual operations. 

Since APM is based on fault prediction which 

might not be always correct, error handling is an 

important part of APM. In particular, false-positive and 

false-negative cases should be taken care of.  The 

error-handling part is responsible for recording the 

actual result of preventive decisions and dynamically 

changing the value of threshold used in the decision 

making to adjust the frequency of checkpointing or 

process migration. 

 
Figure 2. Heuristic Decision Making Scheme 

 

3.  Related Works 
Sahoo [4] analyzed the statistical properties of 

system errors and failures from a network of nearly 

400 AIX servers at IBM. R. Vilalta[6] propose  a rule-

based learning system to predict failure events. These 

works show that both analytical and machine learning 

techniques can be used for failure prediction in HPC.. 

However, they do not provide any end-to-end fault 

management solution for practical applications. 

 Software rejuvenation [2,5] proactively stops and 

restarts system in a time-based or prediction-based 

approach to solve the soft aging problem. It cannot 

handle hardware failures and has a limited applicability 

as it requires privilege access in a shared environment. 

The AMPI-based approach [1] utilizes the processes 

virtualization to enables a process to dynamically 

migrate its objects to a safe location when a fault is 

imminent. This work depends on the specific Charm++ 

framework and the performance evaluate model of the 

migration are not given. The MEAD project [3] 

combines the replicate technique with the failure 

prediction of resource exhaustion to provide proactive 

for CORBA applications. Differing from these works 

that rely on either periodic restart or failover or object 

migration, our work can adaptively take a preventive 

action from three options.  

 

4.  Ongoing and Future Work 
Currently, we are conducting a series of 

experiments with real-world parallel applications on a 

64-node SUN cluster. The objective of these 

experiments is to compare the proposed proactive fault 

management framework with the traditional rollback-

recovery schemes. We are also investigating more 

sophisticate preventive schemes that can take into 

consideration the stochastic characteristic of faulty 

processes and the correlation of multiple failures on 

massive parallel systems.  

 

5.  Reference 
[1] S.Chakravorty, C.L.Mendes, L. V. Kale, 

"Proactive Fault Tolerance in Large Systems", HPCRI 

workshop 2005 

[2] Y. Huang, C. Kintala, N. Kolettis and N. Fulton, 

"Software Rejuvenation : Analysis, Module and 

Applications", IEEE Intl. Symposium on Fault 

Tolerant Computing, FTCS 25 

[3] S.Pertet, P.Narasimhan, "Proactive Recovery in 

Distributed CORBA Applications," DSN 2004 

[4] R.K.Sahoo, A.Sivasubramaniam, M.S. Squillante, 

Y.Zhang, "Failure Data Analysis of a Large-Scale 

Heterogeneous Server Environment".DSN 2004 

[5] K. Vaidyanathan, R. E. Harper, S. W. Hunter and 

K. S. Trivedi, "Analysis and Implementation of 

Software Rejuvenation in Cluster Systems",ACM 

SIGMETRICS 2001/Performance 2001, June 2001 

[6] R. Vilalta, C. V. Apte, J. L. Hellerstein, S. Ma, 

"Predictive algorithms in the management of computer 

systems", IBM Systems Journal issue 41-3,2002 

c: fault prediction confidence;  

p: process set; 

T: current time; 

Tf : predicted failure occurrence time; 

Tw: predicted remaining time per process;  

Tlast: last checkpoint time;  

Trecovery: recovery time per process; 

Tcp: cost of checkpointing per process; 

Tpm: cost of process migration per process; 

Tno_total: aggregated cost with no preventive action; 

Tcp_total: aggregated cost if checkpointing; 

Tpm_total: aggregated cost if process migration; 

 

if  ((Tw < Tf) || (c<threshold) ) take no action option  

else { 

  

no_total w w f last recovery

cp_total w w f cp recovery

pm_total w
pm

T = ((1-c) * T  + c*( T +T -T +T ))

T = ((1-c) * T  + c*( T +T -T+T +T ))

T = T T

p

p

p

∑

∑

∑ +

 

} 

 if (Tno_total < Tcp_total and Tno_total < Tpm_total)  

 take no action option 

else if (Tcp_total < Tpm_total) 

 take checkpointing option 


