
Lightweight Silent Data Corruption Detection
Based on Runtime Data Analysis for HPC Applications

Eduardo Berrocal
Illinois Institute of Technology

Chicago, IL
USA

eberroca@iit.edu

Leonardo
Bautista-Gomez

Argonne National Laboratory
Argonne, IL

USA
leobago@anl.gov

Sheng Di
Argonne National Laboratory

Argonne, IL
USA

sdi1@anl.gov

Zhiling Lan
Illinois Institute of Technology

Chicago, IL
USA

lan@iit.edu

Franck Cappello
Argonne National Laboratory

Argonne, IL
USA

cappello@anl.gov

ABSTRACT
Next-generation supercomputers are expected to have more
components and, at the same time, consume several times less
energy per operation. Consequently, the number of soft errors
is expected to increase dramatically in the coming years. In
this respect, techniques that leverage certain properties of
iterative HPC applications (such as the smoothness of the
evolution of a particular dataset) can be used to detect silent
errors at the application level. In this paper, we present a
pointwise detection model with two phases: one involving
the prediction of the next expected value in the time series
for each data point, and another determining a range (i.e.,
normal value interval) surrounding the predicted next-step
value. We show that dataset correlation can be used to detect
corruptions indirectly and limit the size of the data set to
monitor, taking advantage of the underlying physics of the
simulation. Our results show that, using our techniques, we
can detect a large number of corruptions (i.e., above 90% in
some cases) with 84% memory overhead, and 13.75% extra
computation time.

Index Terms—Fault Tolerance, Resilience, High-Performance
Computing, Silent Data Corruption, Soft Errors, Time Series

1. INTRODUCTION
High-performance computing (HPC) is changing the way

scientists make discoveries. Science applications require
ever-larger machines to solve problems with higher accu-
racy. While future systems promise to provide the power
needed to tackle those science problems, they are also rais-
ing new challenges. For example, transistor size and energy
consumption of future systems must be significantly reduced.
Such steps might dramatically impact the soft error rate

c©2015 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor or
affiliate of the United States government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
HPDC’15, June 15-19, 2015, Portland, OR, USA
c©2015 ACM 978-1-4503-3550-8/15/06 $15.00

DOI: http://dx.doi.org/10.1145/2749246.2749253.

(SER) according to recent studies [4].
Random memory access (RAM) devices have been inten-

sively protected against silent data corruption (SDC) through
error-correcting codes (ECCs) because they have the largest
share of the susceptible surface on high-end computers. Re-
cent studies, however, indicate that ECCs alone cannot cor-
rect an important number of DRAM errors [10]. In addition,
not all parts of the system are ECC-protected: in particular,
logic units and registers inside the processing units are usu-
ally not protected by ECC but by other methods because of
the space, time, and energy cost that ECC requires in order
to work at low level. Historically, the SER of central process-
ing units was minimized through a technique called radiation
hardening, which consists of increasing the capacitance of
circuit nodes in order to increase the critical charge needed
to change the logic level. Unfortunately, this technique in-
volves increasing either the size or the energy consumption of
the components, which is prohibitively expensive at extreme
scale.

Runtime data analysis can be used to leverage the fact that
some datasets produced by iterative HPC applications (i.e.,
the applications’ state at a particular point in time) evolve
smoothly from one time step to the next. This characteristic
can be used effectively to design a general SDC detection
scheme with relatively low overhead. In particular, we will
show that an interval of normal values for the evolution of
the datasets can be predicted, such that any corruption will
push the corrupted data point outside the expected interval
of normal values, and it will, therefore, become an outlier.

Previous work in this area have tried to solve the SDC
problem using different strategies. Namely: by hardware-
level detection [11], process replication [7], algorithm-based
fault tolerance (ABFT) [9], and approximate computing [3].
These techniques, however, are either too expensive resource-
wise, such as hardware-level detection (energy intensive) or
process replication (2x or 3x in extra resources), or not
general enough, such as ABFT or approximate computing
(algorithms need to be adapted manually and only a subset
of the kernels can be protected).

In our previous work [5, 2, 6], we showed the feasibility
of using data analysis with simple and lightweight linear
predictors to detect SDC efficiently. In [6] we used error-

feedback control to improve prediction recall (See Equation
(2) for a definition of recall), and a technique called even
sampling to reduce memory overhead.

In this paper, we introduce a new detection model based
on the user-expected accuracy and past prediction errors.
In addition, we perform a comprehensive evaluation during
live executions with two popular DoE applications: Nek5000
and HACC. We also observe that it is viable to detect, using
the underlying physics of the simulation, corruptions in one
dataset by just using another, thus opening the door for
memory saving strategies.

The rest of the paper is organized as follows. In Section 2
we present our proposed detector. In Section 3 we present our
evaluation and results. Finally, in Section 4 we summarize
our key findings and future work.

2. ANOMALY DETECTION
Our pointwise SDC detection model has two phases: the

first phase involves the prediction of the next expected value
in the time series for each data point, while the second
determines a range (i.e., normal value interval) surrounding
the predicted next-step value. Soft errors can be detected
by observing whether a particular value falls outside this
computed range. The range size, or normal value interval,
will play an important role in obtaining high precision and
recall, defined in Equations (1) and (2), respectively. Here
TP, FP, and FN refer to true positives, false positives, and
false negatives, respectively.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

The magnitude of the range size depends on the relative lo-
cation of the predicted value and the user-expected accuracy.
The key notations used to formulate the pointwise detection

ra
n
g

e
 s

iz
e
 s

(S
ta

g
e
 I
I)

r

real

data

Value

V(t)

Predicted data

value X(t)

(Stage I)

e

u
s
e
r-

to
le

ra
b
le

v
a
lu

e
 i
n
te

rv
a
l

δ
Legend

Predicted data value

Real data value

δ Half of the range size

e Prediction error

r User-expected accuracy

Figure 1: Illustration of our one-step prediction
model (at time step t).

model are presented in Figure 1. X(t) is the predicted value
at time step t. The prediction error (denoted by e) is equal
to the difference between the predicted value X(t) and the
real data value (denoted by V (t)) computed at the current
time step. In practice, we find that δ = r+e works well (zero
false positives) when predictions are very good (i.e., e < r).
Here r represents the user-expected accuracy. The real error
e, however, is unknown at runtime, so we approximate it
by using the last-step prediction error (see Equation (3)),
since we have observed that prediction errors at adjacent
time steps exhibit a high degree of autocorrelation.

ê(t) = |V (t− 1)−X(t− 1)| (3)

The first predictor, called linear curve fitting (LCF), uses
the two most recent previous time steps to fit a linear curve,
which is then projected to the next time step in order to
predict the next value in the time series. Equation (4) shows
how this prediction is calculated. ∆(t− 1) is the slope of the
curve (velocity) at time t− 1.

X(t) = ∆(t− 1) + V (t− 1)

= (V (t− 1)− V (t− 2)) + V (t− 1)

= 2V (t− 1)− V (t− 2)

(4)

The acceleration-based predictor (ABP)1 uses the two and
three most recent previous time steps to extract the velocity
(∆(t−1)) and acceleration (∆2(t−1)) of the data, respectively,
and then combines them to compute the prediction for the
next value in the time series.

X(t) = ∆2(t− 1) + ∆(t− 1) + V (t− 1)

= 3V (t− 1)− 3V (t− 2) + V (t− 3).
(5)

The autoregressive (AR) and the autoregressive moving av-
erage (ARMA) models assume that every value in the time
series depends linearly on its previous values. Equation
(6) describes AR, where c is a constant, ϕi are the coef-
ficients of the model, p is the number of coefficients, and
ε(t) ∼ N (0, σ2) is the noise at time t. Similarly, Equation
(7) describes ARMA, which adds the moving average part
to AR. The errors ε(t− i) are computed by using the past
prediction errors:

ε(t− i) = V (t− i)−X(t− i)

The coefficients ϕi and θi (we set p = q =4) are computed by
using the first 10 time steps of the simulation by least squares
with the Yule-Walker equations. We assume that no errors
occur during this period; otherwise the coefficients would not
reflect the reality of the application’s data behavior.

X(t) = c+

p∑
i=1

ϕiV (t− i) + ε(t) (6)

X(t) = c+

p∑
i=1

ϕiV (t− i) + ε(t) +

q∑
i=1

θiε(t− i) (7)

3. EVALUATION
In this section, we present a set of experimental results to

verify the efficacy of our SDC detector in production-level
iterative HPC applications. All our predictors, as well as our
bit-flip fault injector, are already implemented transparently
in the fault tolerance interface (FTI) toolkit [1] to protect
the execution against silent data corruptions.

We evaluate two well-known and widely used DoE HPC
applications: Nek5000 [12] (a CFD kernel), and HACC [8]
(an N-body cosmology application). Nek5000 is a CFD
solver based on the spectral element method. It is also
being used for a large number of applications in diverse fields
such as reactor thermal-hydraulics and biofluids. HACC
(for Hybrid/Hardware Accelerated Cosmology Code) is a
cosmology code aimed at understanding the nature of dark
matter and dark energy in the universe.

3.1 Prediction Errors
We characterize the distribution of the prediction errors

under different predictors with the two mentioned iterative

1It can also be called quadratic curve fitting (QCF).

HPC application traces regarding different variables. The
variables inlcude the position’s coordinates (x) of the particles
in HACC, and the vertical flow and pressure (in a large eddy
simulation) for Nek5000. We performed the prediction at
each time step for each data point, measuring the error by
taking the absolute difference between the real value and
the predicted one: e(t) = |V (t)−X(t)|. Each trace involves
millions of prediction results, which allow us to build a
cumulative distribution function (CDF) of the prediction
error e, as shown in Figure 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

 0.0005

C
D

F

Prediction Error

AR(4)
ARMA(4,4)

LCF
ABP

(a) HACC (particles’ position)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 3.5e-07

 4e-07

C
D

F

Prediction Error

AR(4)
ARMA(4,4)

LCF
ABP

(b) Nek5000 (vortex)

Figure 2: Cumulative distribution function of pre-
diction errors for different predictors and HPC
datasets.

The most interesting result from these experiments is that
a relatively simple predictor such as ABP is able to achieve
smaller prediction errors than more complex linear models
such as the well-known AR and ARMA models for the se-
lected HPC applications. In absolute terms, for the HACC
application, up to 90% of the predictions have an error less
than or equal to 10−5 under ABP, whereas only 8% to 56%
of other predictors can reach such low errors. In the case
of Nek5000, the prediction errors (90% of predictions) for
vorticity and pressure are less than or equal to 8×10−9 and
2.8×10−10, respectively. By comparison, other predictors are
not able to achieve errors below 10−7. In addition, the AR
and ARMA models require more memory sizes per data point
(since they need to store the coefficients), and a coefficient
learning phase for a number of time steps (in our case 10) in
the training period.

3.2 Detection Results
In the second set of experiments, we test our detector

using traces and real application runs. We choose the ABP
predictor because it has the smallest prediction error, as seen
in Section 3.1. In the case of real application runs, we run
HACC with 512 MPI ranks and around 16 million particles,
protecting the position and velocity variables. Nek5000 is
run with 64 MPI ranks and a grid of 573,440 data points
per rank. Seven variables are protected: position(x,y,z),

velocity(vx,vy,vz), and pressure.
In Figure 3 we inject bit-flips at random particles and/or

data points on particular bit positions on different datasets.
In the case of HACC (single-precision datasets), we set r =
10−6; and for Nek5000 (double-precision datasets), we set r =
10−8. In the figure, vel refers to injection and detection on
the particles’ velocity dataset, and pos+vel refers to injection
on velocity while detecting on position. In the latter case
(Figure 3(b)), we want to explore the idea of leveraging
datasets’ correlation for detection (i.e., having a corruption
in one dataset visible by the other). In the case of HACC,
velocity is used to move a particle to a new position.

Three conclusions can be extracted from these results.
First, if we consider only the corruptions outside the range of
the user-expected accuracy, our method can cover over 90%
of all possible corruptions for HACC (Figure 3(a)). Similarly,
our method can cover 66% of corruptions for Nek5000 (Figure
3(c)).

Second, the performance of our detector depends heavily on
the underlying dataset (Figure 3(b)). We have observed that
position changes are smoother than velocity changes, thus
making the next values for velocity more difficult to predict.
The good news is that leveraging datasets correlations works.
Apart from the savings in memory overhead, these results
indicate that we can achieve a similar recall by monitoring
only position, rather than monitoring both.

Third, we see that our predictors have different results
depending on whether we work with traces or real applica-
tion runs. The reason for such disparities is that traces do
not represent the totality of the application’s data state and
are used only to construct distributions to help us under-
stand different predictors and parameters. In any case, the
results are indeed similar enough to make us confident in our
experiments using traces.

3.3 Performance Overhead
Our SDC detector (using ABP as predictor) is always below

90% memory overhead, 15% runtime overhead, and has a
0% extra network communication for both applications. By
comparison, 2x-replication will produce an overhead of 100%
in all three dimensions. The overheads for HACC are 84%
extra memory consumption and 13.75% extra computation
time. For Nek5000, the memory overhead is only 9.5%, while
the extra computation time never goes above 1%.

4. CONCLUSION AND FUTURE WORK
We have developed a new model to tackle the problem

of SDC detection using user-expected accuracy and past
prediction errors. We compared a large number of linear
predictors that take advantage of the characteristics of iter-
ative HPC application datasets, and also implemented and
evaluated our detector model with production-level scientific
applications using both traces and real experiments on super-
computers. The detection results are promising. Considering
only the corruptions outside the range of the user-expected
accuracy, our method can cover 90% of all possible corrup-
tions for HACC (single-precision), and over 66% for Nek5000
(double-precision).

We have shown that it is viable to detect corruptions in one
variable (such as velocity) by using another (such as position)
in one of our applications (HACC), taking advantage of the
fact that these variables are interconnected by the underlying
physics of the application. Based on this initial observation,

51015202530
Bit Position

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Real
Traces

(a) HACC (particles’ position)

51015202530
Bit Position

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Vel
Pos+Vel

(b) HACC (velocity)

102030405060
Bit Position

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Real
Traces

(c) Nek5000 (vortex)

Figure 3: Comparing recall for bit-flips injected at random particles and/or data points.

we plan to explore further the use of variable correlation to
reduce the memory requirement of detection while keeping
the detection recall high for all variables.

One limitation of our approach is the number of false
positive (FP) detections. Although the FP rate is always
below 10−4 for HACC, and always below 10−3 for Nek5000,
this is still too high for a production level SDC detection
tool. Consider that the large number of detections involved
(one per data point, with millions of potential points per
application) would produce a positive in every iteration.
There are two ways in which this problem can be solved: (1)
making our predictors more accurate, and (2) by optimizing
the detection range parameter δ to find the optimum value
that would maximaze recall by producing almost zero FP.
We plan to follow these two paths in our future research.

Another limitation is performance overheads (see Section
3.3), especially for applications such as HACC that are mem-
ory bound. For such cases, we plan to investigate compression
methods to group close points together in order to reduce
the memory footprint significantly without incurring in a big
reduction in detection recall.

We note that these techniques would only work for iterative
HPC applications. Although such applications are the ma-
jority today, especially in the scientific area of computational
physics, other types of applications are becoming important
in the HPC community in areas such as computational bi-
ology and statistics. Also, simulations with abrupt variable
changes, like applications involving collisions, may need dif-
ferent types of detectors. For those, much work remains to
be done.

Acknowledgments
This material was based upon work supported by the U.S.
Department of Energy, Office of Science, Advanced Scientific
Computing Research Program, under Contract DE-AC02-
06CH11357, and also in part by the ANR RESCUE, and
INRIA-Illinois Joint Laboratory for Petascale Computing.
The work at Illinois Institute of Technology was supported in
part by US National Science Foundation grant CNS-1320125
and CCF-1422009. The software used in this work was
developed in part by the DOE NNSA ASC- and DOE Office
of Science ASCR-supported Flash Center for Computational
Science at the University of Chicago

5. REFERENCES
[1] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch,

F. Cappello, N. Maruyama, and S. Matsuoka. Fti: High
performance fault tolerance interface for hybrid
systems. In SC’11, pages 32:1–32:32, 2011.

[2] L. A. Bautista-Gomez and F. Cappello. Detecting silent
data corruption through data dynamic monitoring for

scientific applications. In PPoPP’14, pages 381–382,
2014.

[3] A. R. Benson, S. Schmit, and R. Schreiber. Silent error
detection in numerical time-stepping schemes.
International Journal of High Performance Computing
Applications, pages 1–20, 2014.

[4] S. Borkar. Designing reliable systems from unreliable
components: The challenges of transistor variability
and degradation. IEEE Micro, 25:10–16, Nov. 2005.

[5] S. Di, E. Berrocal, L. Bautista-Gomez, K. Heisey,
R. Guptal, and F. Cappello. Toward effective detection
of silent data corruptions for hpc applications. SC ’14 -
poster, 2014.

[6] S. Di, E. Berrocal, and F. Cappello. An efficient silent
data corruption detection method with error-feedback
control and even sampling for hpc applications.
CCGRID, 2015.

[7] D. Fiala, F. Mueller, C. Engelmann, R. Riesen,
K. Ferreira, and R. Brightwell. Detection and
correction of silent data corruption for large-scale
high-performance computing. In SC’12, pages
78:1–78:12, 2012.

[8] S. Habib, V. A. Morozov, H. Finkel, A. Pope,
K. Heitmann, K. Kumaran, T. Peterka, J. A. Insley,
D. Daniel, P. K. Fasel, N. Frontiere, and Z. Lukic. The
universe at extreme scale: Multi-petaflop sky
simulation on the bg/q. In SC’12, pages 1–11, 2012.

[9] K.-H. Huang and J. A. Abraham. Algorithm-based
fault tolerance for matrix operations. IEEE
Transactions on Computers, 100(6):518–528, 1984.

[10] A. A. Hwang, I. A. Stefanovici, and B. Schroeder.
Cosmic rays don’t strike twice: Understanding the
nature of dram errors and the implications for system
design. In ASPLOS’XVII, pages 111–122, 2012.

[11] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The
soft error problem: An architectural perspective. In
HPCA’05, pages 243–247. IEEE, 2005.

[12] J. Shin, M. W. Hall, J. Chame, C. Chen, P. F. Fischer,
and P. D. Hovland. Speeding up nek5000 with
autotuning and specialization. In ICS’10, pages
253–262, 2010.

Government License Section (please add after the reference sec-
tion): The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory (“Ar-
gonne”). Argonne, a U.S. Department of Energy Office of Science
laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its be-
half, a paid-up nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to
the public, and perform publicly and display publicly, by or on
behalf of the Government.

