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Abstract 

 
The productivity of HPC system is determined not only 
by their performance, but also by their reliability. The 
conventional method to limit the impact of failures is 
checkpointing. However, existing research shows that 
such a reactive fault tolerance approach can only 
improve system productivity marginally.   Leveraging 
the recent progress made in the field of failure 
prediction, we propose fault-driven rescheduling 
(FARS) to improve system resilience to failures, and 
investigate the feasibility and effectiveness of utilizing 
failure prediction to dynamically adjust the placement 
of active jobs (e.g. running jobs) in response to failure 
prediction. In particular, a rescheduling algorithm is 
designed to enable effective job adjustment by 
evaluating performance impact of potential failures 
and rescheduling on user jobs. The proposed FARS 
complements existing research on fault-aware 
scheduling by allowing user jobs to avoid imminent 
failures at runtime. We evaluate FARS by using actual 
workloads and failure events collected from 
production HPC systems. Our preliminary results 
show the potential of FARS on improving system 
resilience to failures.  
 
1. Introduction 
 

As the scale of high performance computing (HPC) 
keeps increasing, reliability is becoming more of an 
issue due to the decreasing system mean time before 
failure (MTBF) value. Failures can lead to an 
intolerable loss of system performance, in addition to 
substantial maintenance cost. To limit failure impact 
on system productivity, checkpointing has been widely 
used, in which system snapshots are periodically saved 
and stored. Nevertheless, existing research has shown 
that checkpointing can cause severe performance 
degradation if used too frequently. Moreover, such a 
reactive approach suffers from non-trivial recovery 
cost and operational cost [19,24]. Hence, a new fault 

tolerant approach is needed to improve system 
resilience to failures in HPC.  

Recently, much progress has been made in failure 
prediction by using various hardware or software 
based technologies. Given that systems usually present 
certain symptoms before the occurrence of a failure, 
short-term prediction emphasizes on learning and 
discovering pre-failure symptoms for failure 
forecasting in the near future (e.g. in the order of 
minutes) [8]. Typical examples include the warnings 
produced by hardware sensors [1,12,16] regarding 
potential hardware problems or by software-based 
predictive methods using data mining and machine 
learning techniques [2,10,29].Considerable research 
has been conducted on fault-aware scheduling 
[4,22,24,28,30]. This research mainly focus on 
intelligent job allocation based on global failure 
distribution functions such as exponential, Weibull, or 
other long-term probabilities, rather than utilizing 
short-term fault prediction at runtime. 

Leveraging the research on short-term fault 
prediction, in this paper we design and study a fault-
driven rescheduling mechanism denoted as FARS. It 
aims at enhancing system resilience to failures by 
preemptively transferring running processes from 
failure-prone nodes to healthy ones. In particular, this 
paper intends to answer two questions. The first 
question is, “Given the limited number of spare nodes 
available, which processes should be migrated in case 
of multiple simultaneous failures?”  Process migration 
or rescheduling introduces operational overhead, 
prediction is imperfect, and jobs usually have different 
computational characteristics. Therefore, the 
movement of processes belonging to different jobs can 
result in different system performance. By considering 
these factors, we develop performance models to 
quantitatively evaluate the impact of failures and 
rescheduling on user jobs. Based on the models, we 
then design a heuristic rescheduling scheme to 
reschedule active jobs in response to failure prediction. 
The next key question is, “How much performance 
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gain can we achieve by using fault-driven 
rescheduling?” To gain realistic insight into the 
effectiveness of FARS, we conduct extensive trace-
based simulation by using actual workloads and failure 
events collected from production HPC systems. 
Preliminary results indicate that FARS can improve 
system productivity by more than 10% in average, 
even with modest prediction accuracy and a 
conservative reservation of spare nodes. 

A key feature that distinguishes FARS from existing 
fault-aware scheduling work is that FARS focuses on 
dynamically adjusting the placement of active jobs (i.e. 
the jobs that are already scheduled and running) in the 
presence of imminent failures. In other words, FARS 
complements fault-aware scheduling by allowing 
active jobs to avoid anticipated failures at runtime. 
Different from our previous work on application-level 
fault management that aims at reducing the completion 
time of a given application[15], the proposed FARS is 
at system-level, meaning that the primary objective is 
to improve system productivity such as system 
utilization rate, average job response time, job failure 
rate. Specifically, the paper makes the following major 
contributions:  

 Design a fault-driven rescheduling (FARS) scheme 
to improve system productivity in the presence of 
failures by leveraging the research on short-term 
fault prediction.  

 Develop an event-based simulator which 
incorporates the proposed rescheduler into the 
widely used batch scheduler by considering a 
variety of system recovery strategies. 

 Demonstrate the potential of FARS to improve 
system resilience to failures by using actual 
workloads and failure events from HPC systems. 

     The rest of the paper is organized as follows. 
Section 2 discusses related work. Section 3 classifies 
job recovery model in HPC. Section 4 presents the 
proposed fault-driven rescheduling scheme. Section 5 
presents our evaluation methodology and experiment 
results. Finally, Section 6 discusses our future work. 
 
2. Related Work 
 
Failure Prediction. Modern hardware devices are 
deployed with various features (e.g. hardware sensors) 
that can monitor the degradation of an attribute over 
time for early failure detection [1, 12, 16].  On the 
other side, software-based fault prediction is generally 
approached from two different angles: model-based or 
data mining based [2,8,10,27,29]. A model-based 
approach derives an analytical or probabilistic model 
of the system. A warning is triggered when a deviation 

from the model is detected. Data mining, in 
combination with intelligent systems, focuses on 
learning and classifying known faults without 
constructing a model ahead of time.  According to the 
research literature, modern predictors can detect 60% 
to 80% of failures, with the false alarm rate of less than 
35%. By leveraging the research on failure prediction, 
we focus on design fault-driven rescheduling to avoid 
anticipated failures in this paper.  

Process Migration. Intensive research has been 
done on process migration [17].  Process migration can 
be performed at either the kernel-level or the user-
level. Kernel-level migration requires the modification 
of operating systems, while user-level migration  
enables process migration without changing the 
operating system. For instance, Condor allows user-
level process migration by using checkpointing [18]. 
Existing works on process migration for parallel 
applications (e.g. MPI applications) are mainly based 
on the stop-and-restart model, where all the application 
processes stop and then restart on a new set of 
resources (e.g. swapping the failure-imminent nodes 
with healthy ones). This is mandated due to the static 
nature of MPI communicators. Instead of applying the 
stop-and-restart mode, the HPCM (High Performance 
Computing Mobility) system allows live migration of 
parallel applications [5]. The proposed FARS can 
utilize HPCM for the support of rescheduling 
processes.  

Fault-aware Scheduling. There are a number of 
research efforts on fault-aware scheduling or resource 
management [4]. For example, Shatz et al. propose a 
task graph based performance model to maximize a 
reliability cost function, and develop several heuristic 
algorithms based on this model [28]. The authors in 
[22] develop a failure-aware job scheduling algorithm 
for the Blue Gene/L system. It exploits node failure 
probabilities for intelligent job allocation on Blue 
Gene/L. Xiao and Hong propose a reliability-cost 
oriented dynamic scheduling heuristic for real-time 
jobs running in heterogeneous clusters [26]. In HA-
OSCAR [13], a cost-effective recovery policy is 
proposed for head nodes in Linux clusters.  This work 
is based on hot-standby replications by using failure 
prediction. Ching-chih et al. propose a fault tolerant 
algorithm to deal with deadline failures by invoking an 
alternative execution of the job when deadline 
violations are upcoming [9]. Different from these 
works that focus on an optimal initial job placement or 
resource replication, our research emphasizes on 
dynamically adjusting the placement of active jobs (i.e. 
running jobs) in response to failure prediction.  The 
proposed FARS can be easily integrated with existing 
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fault-aware schedulers to further improve system 
resilience to failures on large-scale clusters.  

There are a few research projects studying job 
rescheduling on parallel and distributed computing 
systems. For example, the GrADS project [3] proposes 
an application-level job migration and processor 
swapping approach are presented to reschedule a Grid 
application when a better resource is found. To our 
best knowledge, there is no prior work on exploiting 
failure prediction in job rescheduling to improve the 
system resilience to failures. 
 
3. Failure Recovery Model 

 
According to the job schedulers that are widely 

used in HPC [13,14,20,29], we categorize existing 
system-level failure recovery policies into three 
categories: 

RETRY: The system attempts to re-run the failed 
job on the original set of resources. In this policy, the 
failed job suffers from the failure downtime. 

RESUME: The system attempts to resume the job 
immediately if alternative resources are available. 
Otherwise, the failed jobs are put into a special resume 
queue, waiting for computing resources. In this policy, 
the failed job is restarted as early as possible, but its 
recovery may cause delay of other jobs in the regular 
job queue. 

RESUBMIT: The system automatically resubmits 
the aborted job at the end of the regular job queue. In 
this policy, the failed job is regarded as a newly 
arriving job and will experience the queue waiting time 
before its restart. 

 
4. FARS: FAult-driven ReScheduling 
 
4.1 Failure Prediction Model 
 
   We assume that failures follow the fail-stop model 

and that a fault prediction mechanism is available in 
the system to forecast potential failures. Failure 
prediction is out of the scope of this paper, and 
interested readers can refer to the literature listed in 
Section 2 for more details.  Predictive techniques 
generally fall into two categories according to the 
nature of predictive results:  

 Categorical strategies, where a categorical value is 
predicted to determine whether a failure event will 
occur in the near future or not. 

 Numerical strategies, where a numerical value is 
predicted to evaluate the probability of failures in a 
given time window. 

Given that numerical-value results can be mapped 
into categorical values by discretization, we uniformly 
describe a failure prediction as a process that forecasts 
whether or not a node will experience failures in a 
given time window. Such a predictor is generally 
measured by two accuracy metrics: the false-positive 
rate and the false-negative rate.  Here, the false-
positive rate fp reflects the precision of the failure 
predictor, which is defined as  

     p

false positives
f false positives true positives+= , 

The false-negative rate fn reflects the sensitivity of the 
predictor, which is defined as  

    n

false negatives
f false negatives true positives+= . 

   In FARS, we denote the node with positive 
prediction as a suspected node, the process and the job 
running on the node as suspected process and 
suspected job.  
 

4.2 Main Idea 
   

 FARS quantitatively evaluates failure implications 
on system performance and then re-allocates a set of 
suspected jobs in response to failure prediction. It 
divides the nodes in a system into two groups: working 
nodes for regular job scheduling and spare nodes for 
rescheduling. The use of spare nodes is to guarantee 
the availability of resources required by preemptive 
migration in the presence of failures.  Currently, we 
statically allocate spare nodes according to the historic 
node usage of the system. Our study shows that even 
for highly loaded systems, the allocation of spare 
nodes in FARS is feasible in practice (see Section 5).  

 FARS works with a regular job scheduler in a 
cooperative way.  A user job is submitted to the job 
scheduler, such as the first-come first-server (FCFS) 
batch scheduler using backfilling [21], and starts the 
execution on the allocated working node. FARS is 
triggered at pre-defined points (denoted as decision 
points) inserted by the system. Upon each invocation, 
based on failure prediction, FARS first identifies 
suspected working nodes and available spare nodes. It 
then launches checkpointing or rescheduling 
depending on failure prediction: (1) for the processes 
residing on failure-prone working nodes, FARS 
transfers a selected set of suspected processes based on 
the algorithm discussed in the next subsection; (2) for 
other processes, FARS conducts checkpointing. After 
rescheduling, the suspected nodes become spare nodes 
and stand by, while the swapped spare nodes serve as 
working nodes.  If any failure occurs during job 
rescheduling, we regard the affected job as being failed. 
 
4.3   Rescheduling Algorithm 
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Since multiple failures may occur simultaneously, it is 
possible that at a decision point, multiple user 
processes from different jobs will be affected by 
failures. As the number of available spare nodes is 
limited, contentions exist among the suspected jobs for 
the spare nodes. To determine which suspected 
processes should be migrated, an iterative greedy 
algorithm is adopted, with the objective to maximize 
the rescheduling gain based on performance impact 
models. In the following, we first describe the 
performance model and then present our rescheduling 
algorithm. 

According to the failure model discussed in Section 
3, the implication of failures on a specific job can be 
divided into four parts: (1) workloss, the amount of 
volatile work lost due to the failure; (2) restart cost, 
the time required to restart the job during recovery; (3) 
failure downtime, the time used to repair the failed 
node; and (4) requeue cost, the queue waiting time of 
the job that is caused by the failure.  

Our performance models estimate the rescheduling 
gain G(J,K) of migrating the suspected processes 
belonging to suspected job J using K healthy spare 
nodes as follows: 

Step 1:  Calculate the failure probability of job J as 
( )1      

0                      

−⎧
⎪ − >= ⎨
⎪ ≤⎩

J

JS K J

J

f if S KF p
if S K

 where JS   denotes 

the number of suspected processes of job J and fp is 
the false positive rate of failure prediction.  
Step 2: Calculate failure impact on job J if FJ  is 
greater than 0: 

 Calculate the aggregated workloss of the job as  
(| | min( , ))worklossC J I  remaining work of  J= ×  , 

where |J| is the size of the job and I is the 
decision interval. Without the precise knowledge 
of failure occurrence time, we pessimistically 
assume that the job will fail right before the next 
decision point. 

 Calculate the job restart cost as ( )restartC J , which 
can be estimated according to the latest job 
(re)start cost.   

 Calculate the downtime cost as 

( )
1

( )
JS K

J J
downtime i

i
C DT N S K

−

=

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
∑  where 

J
iN  denotes the node where the ith suspected 

process of job J resides and DT( J
iN )is the 

estimated node downtime. This formula 
calculates the average downtime over all the 
remaining suspect processes that cannot be 
migrated.  It is applied to the RETRY policy and 

the RESUME policy when alternative resource is 
not available.  

 Calculate the requeue cost Cqueue, which is the 
queue waiting time. It can be estimated by 
historical data. This cost is applied to the 
RESUBMIT policy. 

 Calculate the expected performance loss as 
, J workloss restart downtime queueE(J K) F (C C C C )= × + + +  

Step 3: Calculate the rescheduling overhead OJ as 
restartC  since we regard a job rescheduling as a 

proactive restart immediately after a checkpointing.  
Step 4: Calculate the rescheduling gain of migrating 
K suspected processes of job J: 

( , ) ( ,0) ( , )= − − JG J K E J E J K O , which is the 
performance difference with and without job 
rescheduling. 
Based on the above performance impact models, we 

develop a rescheduling algorithm (see Figure 1).  Here, 
K denotes the number of total available spare nodes, 
Mjob denotes the set of suspected jobs. The rationale of 
this iterative algorithm is to identify a suspected 
process i* of a job J* for each available spare node 
such that the rescheduling of the process i* can lead to 
a maximum performance gain in an iterative style. A 
max-heap data structure is used for efficient 
maximum-selection operation in line 2 in figure 1. The 
computational complexity of the algorithm is 

∈
⋅ >∑( ( 0))

j M job

JO K Log S . 

 
Figure 1. The FARS rescheduling algorithm  
 

5. Performance Evaluation  
 
5.1. Methodology 

FARS (K, Mjob) 
1. For each suspected job J, calculate the G(J,1),which 

is the  rescheduling gain if we assign one spare 
node to job J  

2. Store the J and its rescheduling gain G(J,1)  in a 
max-heap based  priority-queue. 

3.  while ( K>0 and 
j M job

JS
∈∑    )  

4.    Select the job J* having the maximum gain G(J*,1), 
assign one spare node to J* 

5.   Inside the job J*, select the suspected process i* 

running on the node *
*
J
iN , which has the maximum 

downtime *
*( )J

iDT N  
6.    Remove process i* from the suspected processes 

list of job J*, then update gain G(J*,1). 

7.    * * 1; 1;J JS S K K= − = −  
8.  end while 
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A discrete event-based simulator is developed to 
evaluate FARS.  It integrates the proposed FARS with 
the widely used FCFS/EASY Backfilling scheduler 
[21]. We compare FCFS/EASY Backfilling with 
FARS rescheduling with against FCFS/EASY 
Backfilling with periodic checkpointing. We simply 
use the term FCFS and FARS to denote these two 
strategies for the rest of the paper.  

In order to gain practical insight, the simulator uses 
the job log from a 128-node IBM SP2 machine at 
SDSC and a failure log collected from a production 
system at NCSA [19].  The job log contains 59,725 
parallel jobs. In the failure log, the system-wide MTBF 
is 0.79 hour and node-wide MTBF is 14.2 days.  

Six performance metrics are used for evaluation: (1) 
response time Resp; (2) utilization rate Util; (3) 
throughput Thru; (4) workloss, the service unit  loss 
due to failures; (5) job failure rate Frate, the ratio 
between the number of failed jobs and the total number 
of jobs; 6) migration cost, the cost introduced by 
process migration (i.e. rescheduling) per job. 

 
5.2. Results Under Default Setting 
 
The default runtime parameters are listed in Table 1. 

These parameters and their corresponding ranges are 
selected based on the results reported in [15,19,22,30]. 
 

Table 1. Default parameter setting 
Reschedule Interval 3 hours 
Checkpointing Cost 3 mins 
Rescheduling overhead 6 mins 
Decent Prediction(fp,fn) (0.3,0.3) 
OK Prediction (fp,fn) (0.5,0.5) 
Number of Spare Nodes 2 

 

We select two prediction settings: (1) decent 
prediction to represent the prediction with a high 
accuracy; and (2) OK prediction to represent the 
prediction with a low accuracy. Conservatively, we 
only reserve two nodes out of 128 nodes (less than 2%) 
as spare nodes.   
  The relative performance improvement of FARS 

over FCFS is presented in Figure 2. The relative 
improvement in terms of response time is  8%, 14.7% 
and 41% under three failure recovery policies 
respectively by using FARS with decent prediction; 
with OK prediction, the relative improvements are 
3.5%, 6.7% and 27% respectively. FARS provides 
relatively smaller improvement (ranging from 0.5% to 
2.3%)  in terms of utilization rate and throughput. This 
is due to the fact that both metrics are mainly 
determined by the system usage, rather than by fault 
tolerance strategies. Figure 2 also indicates that FARS 
provides significant improvement in terms of 
reliability-related metrics (i.e. workloss and job failure 
rate).  With decent prediction, 24%-26% improvement 
in workloss and 16%-24% improvement in job failure 
rate are observed for three recovery policies. With OK 
prediction, 14%-28% improvement in workloss and 
12%-18% improvement in job failure rate are observed. 
This demonstrates the effectiveness of FARS in 
improving system resilience to failures. The overhead 
is estimated as the job restart cost, including both I/O 
and communication cost. Figure 2(c) lists the amount 
of overhead (in seconds) incurred by rescheduling. For 
decent and OK prediction, the average costs are around 
600.0 and 900.0 seconds respectively. Given that the 
average job response time is around 1.0E+05 seconds, 
the overhead accounts for less than 1% of the total 
elapsed time. 

 Relative Improvement of FARS over FCFS 
with Decent Accuracy
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Figure 2.  Performance comparison of FARS versus FCFS under default setting 
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Figure 3.  Relative performance gain with varying prediction accuracy 
5.3. Impact of Prediction Accuracy 
 
In this set of experiments, we investigate the sensitivity 
of FARS to predication accuracy. The default 
parameter setting is used, except that we change the 
values for false positive and false negative.  The 
performance results are presented in Figure 3: (1) in 
Figure 3(a)-(c), the false negative fn changes from 0.1 
to 0.9 with a fixed fp (=0.3), and (2) in Figure 3(d)-(f), 
the false negative fp changes from 0.1 to 0.9 with a 
fixed fn (=0.3). Due to the space limitation, we only 
present three performance metrics, namely average 
response time, system utilization rate and job failure 
rate.  

From Figure 3(a)-(c), we can see that FARS 
maintains its performance gain over the regular FCFS, 
even with modest prediction accuracy in terms of false 
negative errors. With increasing values of fn, the 
relative performance gains gradually approach zero. 
When fn increases, it is getting unlikely for the failure 
predictor to detect failures. As a consequence, the 
effectiveness of FARS is decreasing.   From Figure 
3(d)-(f), we notice that the performance gain achieved 
by FARS drops sharply with increasing false positive 
rate. In other words, the performance impact caused by 
fp is more pronounced than that caused by fn.  For 
example, with RESUME policy, the relative gain of 
average response time decreases from 18% to 1% when 
fp increases from 0.1 to 0.65 and then becomes 
negative when fp increases beyond 0.65. Similar trends 
are observed with other performance metrics as well. A 

high value of fp means that the failure predictor 
produces many false alarms, thereby causing negative 
performance gain of FARS. There are two major 
reasons for this. First, false alarms may cause 
contention for the limited amount of spare nodes, 
thereby reducing the chance for FARS to find backup 
resources for those true failure predictions. Second, 
due to the high false alarm rate, unnecessary 
rescheduling may be incurred, which can cause non-
trivial overhead to system performance. Nevertheless, 
from these figures, we can still state that as long as the 
false positive rate fp is smaller than 0.65, FARS always 
outperforms the regular FCFS. 
 
5.4. Impact of Spare Nodes 
 

In this set of experiments, we change the number of 
spare nodes from 1 to 8 in the default parameter 
setting.  Figure 4(a) – (c) shows the curves of five 
performance metrics under different system recovery 
policies. The overall performance trend shows small 
variations. For each system recovery policy, we 
observe that an optimal number of spare nodes exist. 
For example, it is 1 for RETRY policy, 2 for RESUME 
policy and 5 for RESUBMIT policy. Although the 
optimal value generally depends on the system 
configuration and usage, the experiments suggest that 
we can always conservatively reserve a modest number 
of spare nodes (e.g. less than 5% of the overall 
computing resources) for fault management to improve 
system productivity. For instance, even with only one 
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spare node (less then 1% out of 128 nodes), the 
performance gain for response time achieved by FARS 
is around 42% for RETRY policy, 14.7% for 
RESUME policy, and 9% for RESUBMIT policy. 
To investigate the feasibility of spare node reservation, 

we have studied the distribution of idle nodes on a 
number of production systems [7]. The probability 
mass functions (PMF) of idle nodes are plotted in 
Figure 5. Here, we present the results of two systems: 
the 128-node SDSC-SP2 system with 84% utilization 
rate and the 400-node SDSC-Paragon system with 71% 
utilization rate. They are selected to represent heavily 
and moderately loaded systems. The results indicate 
that most production systems generally have a couple 
of unused nodes during the operation. For example, the 
chances that there are more than 2% of idle nodes are 
73% and 99% on SDSC-SP2 and SDSC-Paragon 
respectively. We have found similar patterns on other 
production systems. This observation indicates that it is 
feasible to reserve a few nodes as spare nodes for fault-
driven rescheduling used in FARS. 
 
6. Summary 
 

    In this paper, we have presented a fault-driven 
rescheduling (FARS) for improving system resilience 
to failures, and investigated the effectiveness of 
utilizing failure prediction to dynamically adjust the 
placement of active jobs. In particular, we have 
designed a rescheduling algorithm based on 
quantitative performance models.  Extensive trace-
based simulations with actual workload and failure 
events were conducted to study the performance of the 
proposed FARS under a wide range of prediction 
accuracies and system parameters.  Our preliminary 
results indicate that FARS is valuable and has the 
potential to significantly improve system resilience to 
failures.  

Our study has some limitations that remain as our 
future work. First, we are in the process of collecting 
more workloads and failure events from large-scale 
systems to further evaluate the effectiveness of the 
proposed FARS. Second, we plan to integrate FARS 
with existing scheduling system[21, 23]. We expect 
that this combination can further improve the system 
performance. Lastly it is also interesting to investigate 
other possible rescheduling solutions and evaluating 
them with various batch schedulers. 
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Figure 4.Relative performance gain of FARS against FCFS with varying number of spare nodes 
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