
In the Proc. of International Conference on Parallel Processing (ICPP’07)

Fault-Driven Re-Scheduling For Improving System-level Fault Resilience

Yawei Li*, Prashasta Gujrati*, Zhiling Lan*, Xian-he Sun*#

*Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616
{liyawei,gujrpra,lan,sun}@iit.edu

#Computing Division
Fermi National Accelerator Laboratory

Batavia, IL 60510-0500

Abstract

The productivity of HPC system is determined not only
by their performance, but also by their reliability. The
conventional method to limit the impact of failures is
checkpointing. However, existing research shows that
such a reactive fault tolerance approach can only
improve system productivity marginally. Leveraging
the recent progress made in the field of failure
prediction, we propose fault-driven rescheduling
(FARS) to improve system resilience to failures, and
investigate the feasibility and effectiveness of utilizing
failure prediction to dynamically adjust the placement
of active jobs (e.g. running jobs) in response to failure
prediction. In particular, a rescheduling algorithm is
designed to enable effective job adjustment by
evaluating performance impact of potential failures
and rescheduling on user jobs. The proposed FARS
complements existing research on fault-aware
scheduling by allowing user jobs to avoid imminent
failures at runtime. We evaluate FARS by using actual
workloads and failure events collected from
production HPC systems. Our preliminary results
show the potential of FARS on improving system
resilience to failures.

1. Introduction

As the scale of high performance computing (HPC)
keeps increasing, reliability is becoming more of an
issue due to the decreasing system mean time before
failure (MTBF) value. Failures can lead to an
intolerable loss of system performance, in addition to
substantial maintenance cost. To limit failure impact
on system productivity, checkpointing has been widely
used, in which system snapshots are periodically saved
and stored. Nevertheless, existing research has shown
that checkpointing can cause severe performance
degradation if used too frequently. Moreover, such a
reactive approach suffers from non-trivial recovery
cost and operational cost [19,24]. Hence, a new fault

tolerant approach is needed to improve system
resilience to failures in HPC.

Recently, much progress has been made in failure
prediction by using various hardware or software
based technologies. Given that systems usually present
certain symptoms before the occurrence of a failure,
short-term prediction emphasizes on learning and
discovering pre-failure symptoms for failure
forecasting in the near future (e.g. in the order of
minutes) [8]. Typical examples include the warnings
produced by hardware sensors [1,12,16] regarding
potential hardware problems or by software-based
predictive methods using data mining and machine
learning techniques [2,10,29].Considerable research
has been conducted on fault-aware scheduling
[4,22,24,28,30]. This research mainly focus on
intelligent job allocation based on global failure
distribution functions such as exponential, Weibull, or
other long-term probabilities, rather than utilizing
short-term fault prediction at runtime.

Leveraging the research on short-term fault
prediction, in this paper we design and study a fault-
driven rescheduling mechanism denoted as FARS. It
aims at enhancing system resilience to failures by
preemptively transferring running processes from
failure-prone nodes to healthy ones. In particular, this
paper intends to answer two questions. The first
question is, “Given the limited number of spare nodes
available, which processes should be migrated in case
of multiple simultaneous failures?” Process migration
or rescheduling introduces operational overhead,
prediction is imperfect, and jobs usually have different
computational characteristics. Therefore, the
movement of processes belonging to different jobs can
result in different system performance. By considering
these factors, we develop performance models to
quantitatively evaluate the impact of failures and
rescheduling on user jobs. Based on the models, we
then design a heuristic rescheduling scheme to
reschedule active jobs in response to failure prediction.
The next key question is, “How much performance

In the Proc. of International Conference on Parallel Processing (ICPP’07)

gain can we achieve by using fault-driven
rescheduling?” To gain realistic insight into the
effectiveness of FARS, we conduct extensive trace-
based simulation by using actual workloads and failure
events collected from production HPC systems.
Preliminary results indicate that FARS can improve
system productivity by more than 10% in average,
even with modest prediction accuracy and a
conservative reservation of spare nodes.

A key feature that distinguishes FARS from existing
fault-aware scheduling work is that FARS focuses on
dynamically adjusting the placement of active jobs (i.e.
the jobs that are already scheduled and running) in the
presence of imminent failures. In other words, FARS
complements fault-aware scheduling by allowing
active jobs to avoid anticipated failures at runtime.
Different from our previous work on application-level
fault management that aims at reducing the completion
time of a given application[15], the proposed FARS is
at system-level, meaning that the primary objective is
to improve system productivity such as system
utilization rate, average job response time, job failure
rate. Specifically, the paper makes the following major
contributions:

 Design a fault-driven rescheduling (FARS) scheme
to improve system productivity in the presence of
failures by leveraging the research on short-term
fault prediction.

 Develop an event-based simulator which
incorporates the proposed rescheduler into the
widely used batch scheduler by considering a
variety of system recovery strategies.

 Demonstrate the potential of FARS to improve
system resilience to failures by using actual
workloads and failure events from HPC systems.

 The rest of the paper is organized as follows.
Section 2 discusses related work. Section 3 classifies
job recovery model in HPC. Section 4 presents the
proposed fault-driven rescheduling scheme. Section 5
presents our evaluation methodology and experiment
results. Finally, Section 6 discusses our future work.

2. Related Work

Failure Prediction. Modern hardware devices are
deployed with various features (e.g. hardware sensors)
that can monitor the degradation of an attribute over
time for early failure detection [1, 12, 16]. On the
other side, software-based fault prediction is generally
approached from two different angles: model-based or
data mining based [2,8,10,27,29]. A model-based
approach derives an analytical or probabilistic model
of the system. A warning is triggered when a deviation

from the model is detected. Data mining, in
combination with intelligent systems, focuses on
learning and classifying known faults without
constructing a model ahead of time. According to the
research literature, modern predictors can detect 60%
to 80% of failures, with the false alarm rate of less than
35%. By leveraging the research on failure prediction,
we focus on design fault-driven rescheduling to avoid
anticipated failures in this paper.

Process Migration. Intensive research has been
done on process migration [17]. Process migration can
be performed at either the kernel-level or the user-
level. Kernel-level migration requires the modification
of operating systems, while user-level migration
enables process migration without changing the
operating system. For instance, Condor allows user-
level process migration by using checkpointing [18].
Existing works on process migration for parallel
applications (e.g. MPI applications) are mainly based
on the stop-and-restart model, where all the application
processes stop and then restart on a new set of
resources (e.g. swapping the failure-imminent nodes
with healthy ones). This is mandated due to the static
nature of MPI communicators. Instead of applying the
stop-and-restart mode, the HPCM (High Performance
Computing Mobility) system allows live migration of
parallel applications [5]. The proposed FARS can
utilize HPCM for the support of rescheduling
processes.

Fault-aware Scheduling. There are a number of
research efforts on fault-aware scheduling or resource
management [4]. For example, Shatz et al. propose a
task graph based performance model to maximize a
reliability cost function, and develop several heuristic
algorithms based on this model [28]. The authors in
[22] develop a failure-aware job scheduling algorithm
for the Blue Gene/L system. It exploits node failure
probabilities for intelligent job allocation on Blue
Gene/L. Xiao and Hong propose a reliability-cost
oriented dynamic scheduling heuristic for real-time
jobs running in heterogeneous clusters [26]. In HA-
OSCAR [13], a cost-effective recovery policy is
proposed for head nodes in Linux clusters. This work
is based on hot-standby replications by using failure
prediction. Ching-chih et al. propose a fault tolerant
algorithm to deal with deadline failures by invoking an
alternative execution of the job when deadline
violations are upcoming [9]. Different from these
works that focus on an optimal initial job placement or
resource replication, our research emphasizes on
dynamically adjusting the placement of active jobs (i.e.
running jobs) in response to failure prediction. The
proposed FARS can be easily integrated with existing

In the Proc. of International Conference on Parallel Processing (ICPP’07)

fault-aware schedulers to further improve system
resilience to failures on large-scale clusters.

There are a few research projects studying job
rescheduling on parallel and distributed computing
systems. For example, the GrADS project [3] proposes
an application-level job migration and processor
swapping approach are presented to reschedule a Grid
application when a better resource is found. To our
best knowledge, there is no prior work on exploiting
failure prediction in job rescheduling to improve the
system resilience to failures.

3. Failure Recovery Model

According to the job schedulers that are widely

used in HPC [13,14,20,29], we categorize existing
system-level failure recovery policies into three
categories:

RETRY: The system attempts to re-run the failed
job on the original set of resources. In this policy, the
failed job suffers from the failure downtime.

RESUME: The system attempts to resume the job
immediately if alternative resources are available.
Otherwise, the failed jobs are put into a special resume
queue, waiting for computing resources. In this policy,
the failed job is restarted as early as possible, but its
recovery may cause delay of other jobs in the regular
job queue.

RESUBMIT: The system automatically resubmits
the aborted job at the end of the regular job queue. In
this policy, the failed job is regarded as a newly
arriving job and will experience the queue waiting time
before its restart.

4. FARS: FAult-driven ReScheduling

4.1 Failure Prediction Model

 We assume that failures follow the fail-stop model

and that a fault prediction mechanism is available in
the system to forecast potential failures. Failure
prediction is out of the scope of this paper, and
interested readers can refer to the literature listed in
Section 2 for more details. Predictive techniques
generally fall into two categories according to the
nature of predictive results:

 Categorical strategies, where a categorical value is
predicted to determine whether a failure event will
occur in the near future or not.

 Numerical strategies, where a numerical value is
predicted to evaluate the probability of failures in a
given time window.

Given that numerical-value results can be mapped
into categorical values by discretization, we uniformly
describe a failure prediction as a process that forecasts
whether or not a node will experience failures in a
given time window. Such a predictor is generally
measured by two accuracy metrics: the false-positive
rate and the false-negative rate. Here, the false-
positive rate fp reflects the precision of the failure
predictor, which is defined as

 p

false positives
f false positives true positives+= ,

The false-negative rate fn reflects the sensitivity of the
predictor, which is defined as

 n

false negatives
f false negatives true positives+= .

 In FARS, we denote the node with positive
prediction as a suspected node, the process and the job
running on the node as suspected process and
suspected job.

4.2 Main Idea

 FARS quantitatively evaluates failure implications
on system performance and then re-allocates a set of
suspected jobs in response to failure prediction. It
divides the nodes in a system into two groups: working
nodes for regular job scheduling and spare nodes for
rescheduling. The use of spare nodes is to guarantee
the availability of resources required by preemptive
migration in the presence of failures. Currently, we
statically allocate spare nodes according to the historic
node usage of the system. Our study shows that even
for highly loaded systems, the allocation of spare
nodes in FARS is feasible in practice (see Section 5).

 FARS works with a regular job scheduler in a
cooperative way. A user job is submitted to the job
scheduler, such as the first-come first-server (FCFS)
batch scheduler using backfilling [21], and starts the
execution on the allocated working node. FARS is
triggered at pre-defined points (denoted as decision
points) inserted by the system. Upon each invocation,
based on failure prediction, FARS first identifies
suspected working nodes and available spare nodes. It
then launches checkpointing or rescheduling
depending on failure prediction: (1) for the processes
residing on failure-prone working nodes, FARS
transfers a selected set of suspected processes based on
the algorithm discussed in the next subsection; (2) for
other processes, FARS conducts checkpointing. After
rescheduling, the suspected nodes become spare nodes
and stand by, while the swapped spare nodes serve as
working nodes. If any failure occurs during job
rescheduling, we regard the affected job as being failed.

4.3 Rescheduling Algorithm

In the Proc. of International Conference on Parallel Processing (ICPP’07)

Since multiple failures may occur simultaneously, it is
possible that at a decision point, multiple user
processes from different jobs will be affected by
failures. As the number of available spare nodes is
limited, contentions exist among the suspected jobs for
the spare nodes. To determine which suspected
processes should be migrated, an iterative greedy
algorithm is adopted, with the objective to maximize
the rescheduling gain based on performance impact
models. In the following, we first describe the
performance model and then present our rescheduling
algorithm.

According to the failure model discussed in Section
3, the implication of failures on a specific job can be
divided into four parts: (1) workloss, the amount of
volatile work lost due to the failure; (2) restart cost,
the time required to restart the job during recovery; (3)
failure downtime, the time used to repair the failed
node; and (4) requeue cost, the queue waiting time of
the job that is caused by the failure.

Our performance models estimate the rescheduling
gain G(J,K) of migrating the suspected processes
belonging to suspected job J using K healthy spare
nodes as follows:

Step 1: Calculate the failure probability of job J as
()1

0

−⎧
⎪ − >= ⎨
⎪ ≤⎩

J

JS K J

J

f if S KF p
if S K

 where JS denotes

the number of suspected processes of job J and fp is
the false positive rate of failure prediction.
Step 2: Calculate failure impact on job J if FJ is
greater than 0:

 Calculate the aggregated workloss of the job as
(| | min(,))worklossC J I remaining work of J= × ,

where |J| is the size of the job and I is the
decision interval. Without the precise knowledge
of failure occurrence time, we pessimistically
assume that the job will fail right before the next
decision point.

 Calculate the job restart cost as ()restartC J , which
can be estimated according to the latest job
(re)start cost.

 Calculate the downtime cost as

()
1

()
JS K

J J
downtime i

i
C DT N S K

−

=

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
∑ where

J
iN denotes the node where the ith suspected

process of job J resides and DT(J
iN)is the

estimated node downtime. This formula
calculates the average downtime over all the
remaining suspect processes that cannot be
migrated. It is applied to the RETRY policy and

the RESUME policy when alternative resource is
not available.

 Calculate the requeue cost Cqueue, which is the
queue waiting time. It can be estimated by
historical data. This cost is applied to the
RESUBMIT policy.

 Calculate the expected performance loss as
, J workloss restart downtime queueE(J K) F (C C C C)= × + + +

Step 3: Calculate the rescheduling overhead OJ as
restartC since we regard a job rescheduling as a

proactive restart immediately after a checkpointing.
Step 4: Calculate the rescheduling gain of migrating
K suspected processes of job J:

(,) (,0) (,)= − − JG J K E J E J K O , which is the
performance difference with and without job
rescheduling.
Based on the above performance impact models, we

develop a rescheduling algorithm (see Figure 1). Here,
K denotes the number of total available spare nodes,
Mjob denotes the set of suspected jobs. The rationale of
this iterative algorithm is to identify a suspected
process i* of a job J* for each available spare node
such that the rescheduling of the process i* can lead to
a maximum performance gain in an iterative style. A
max-heap data structure is used for efficient
maximum-selection operation in line 2 in figure 1. The
computational complexity of the algorithm is

∈
⋅ >∑((0))

j M job

JO K Log S .

Figure 1. The FARS rescheduling algorithm

5. Performance Evaluation

5.1. Methodology

FARS (K, Mjob)
1. For each suspected job J, calculate the G(J,1),which

is the rescheduling gain if we assign one spare
node to job J

2. Store the J and its rescheduling gain G(J,1) in a
max-heap based priority-queue.

3. while (K>0 and
j M job

JS
∈∑)

4. Select the job J* having the maximum gain G(J*,1),
assign one spare node to J*

5. Inside the job J*, select the suspected process i*

running on the node *
*
J
iN , which has the maximum

downtime *
*()J

iDT N
6. Remove process i* from the suspected processes

list of job J*, then update gain G(J*,1).

7. * * 1; 1;J JS S K K= − = −
8. end while

In the Proc. of International Conference on Parallel Processing (ICPP’07)

A discrete event-based simulator is developed to
evaluate FARS. It integrates the proposed FARS with
the widely used FCFS/EASY Backfilling scheduler
[21]. We compare FCFS/EASY Backfilling with
FARS rescheduling with against FCFS/EASY
Backfilling with periodic checkpointing. We simply
use the term FCFS and FARS to denote these two
strategies for the rest of the paper.

In order to gain practical insight, the simulator uses
the job log from a 128-node IBM SP2 machine at
SDSC and a failure log collected from a production
system at NCSA [19]. The job log contains 59,725
parallel jobs. In the failure log, the system-wide MTBF
is 0.79 hour and node-wide MTBF is 14.2 days.

Six performance metrics are used for evaluation: (1)
response time Resp; (2) utilization rate Util; (3)
throughput Thru; (4) workloss, the service unit loss
due to failures; (5) job failure rate Frate, the ratio
between the number of failed jobs and the total number
of jobs; 6) migration cost, the cost introduced by
process migration (i.e. rescheduling) per job.

5.2. Results Under Default Setting

The default runtime parameters are listed in Table 1.

These parameters and their corresponding ranges are
selected based on the results reported in [15,19,22,30].

Table 1. Default parameter setting
Reschedule Interval 3 hours
Checkpointing Cost 3 mins
Rescheduling overhead 6 mins
Decent Prediction(fp,fn) (0.3,0.3)
OK Prediction (fp,fn) (0.5,0.5)
Number of Spare Nodes 2

We select two prediction settings: (1) decent
prediction to represent the prediction with a high
accuracy; and (2) OK prediction to represent the
prediction with a low accuracy. Conservatively, we
only reserve two nodes out of 128 nodes (less than 2%)
as spare nodes.
 The relative performance improvement of FARS

over FCFS is presented in Figure 2. The relative
improvement in terms of response time is 8%, 14.7%
and 41% under three failure recovery policies
respectively by using FARS with decent prediction;
with OK prediction, the relative improvements are
3.5%, 6.7% and 27% respectively. FARS provides
relatively smaller improvement (ranging from 0.5% to
2.3%) in terms of utilization rate and throughput. This
is due to the fact that both metrics are mainly
determined by the system usage, rather than by fault
tolerance strategies. Figure 2 also indicates that FARS
provides significant improvement in terms of
reliability-related metrics (i.e. workloss and job failure
rate). With decent prediction, 24%-26% improvement
in workloss and 16%-24% improvement in job failure
rate are observed for three recovery policies. With OK
prediction, 14%-28% improvement in workloss and
12%-18% improvement in job failure rate are observed.
This demonstrates the effectiveness of FARS in
improving system resilience to failures. The overhead
is estimated as the job restart cost, including both I/O
and communication cost. Figure 2(c) lists the amount
of overhead (in seconds) incurred by rescheduling. For
decent and OK prediction, the average costs are around
600.0 and 900.0 seconds respectively. Given that the
average job response time is around 1.0E+05 seconds,
the overhead accounts for less than 1% of the total
elapsed time.

 Relative Improvement of FARS over FCFS
with Decent Accuracy

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

Resp Util Thru Workloss Frate

RESUBMIT RESUME
RETRY

Relative Improvement of FARS over FCFS
with OK Accuracy

0%

5%

10%

15%

20%

25%

30%

Resp Util Thru Workloss Frate

RESUBMIT RESUME
RETRY

Job Migration Cost

0
100
200
300
400
500
600
700
800
900

1000

Decent Accuracy OK accuracy

Se
co

nd
s

RESUBMIT
RESUME
RETRY

(a) With Decent prediction accuracy (b) With OK prediction accuracy (c) Migration costs
Figure 2. Performance comparison of FARS versus FCFS under default setting

In the Proc. of International Conference on Parallel Processing (ICPP’07)

Relative improvement on Resp

0%

10%

20%

30%

40%

50%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
false negative error

RESUBMIT
RESUME
RETRY

Relative improvement on Util

-1%

0%

1%

2%

3%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

false negative error

RESUBMIT
RESUME
RETRY

Relative improvement on Frate

0%

5%

10%

15%

20%

25%

30%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
false negative error

RESUBMIT
RESUME
RETRY

(a) (b) (c)

Relative improvement on Resp

-30%

-15%

0%

15%

30%

45%

60%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

false positive error

RESUBMIT
RESUME
RETRY

Relative improvement on Util

-1%

0%

1%

2%

3%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

false positive error

RESUBMIT
RESUME
RETRY

Relative improvement on Frate

0%

10%

20%

30%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
false positive error

RESUBMIT
RESUME
RETRY

 (d) (e) (f)

Figure 3. Relative performance gain with varying prediction accuracy
5.3. Impact of Prediction Accuracy

In this set of experiments, we investigate the sensitivity
of FARS to predication accuracy. The default
parameter setting is used, except that we change the
values for false positive and false negative. The
performance results are presented in Figure 3: (1) in
Figure 3(a)-(c), the false negative fn changes from 0.1
to 0.9 with a fixed fp (=0.3), and (2) in Figure 3(d)-(f),
the false negative fp changes from 0.1 to 0.9 with a
fixed fn (=0.3). Due to the space limitation, we only
present three performance metrics, namely average
response time, system utilization rate and job failure
rate.

From Figure 3(a)-(c), we can see that FARS
maintains its performance gain over the regular FCFS,
even with modest prediction accuracy in terms of false
negative errors. With increasing values of fn, the
relative performance gains gradually approach zero.
When fn increases, it is getting unlikely for the failure
predictor to detect failures. As a consequence, the
effectiveness of FARS is decreasing. From Figure
3(d)-(f), we notice that the performance gain achieved
by FARS drops sharply with increasing false positive
rate. In other words, the performance impact caused by
fp is more pronounced than that caused by fn. For
example, with RESUME policy, the relative gain of
average response time decreases from 18% to 1% when
fp increases from 0.1 to 0.65 and then becomes
negative when fp increases beyond 0.65. Similar trends
are observed with other performance metrics as well. A

high value of fp means that the failure predictor
produces many false alarms, thereby causing negative
performance gain of FARS. There are two major
reasons for this. First, false alarms may cause
contention for the limited amount of spare nodes,
thereby reducing the chance for FARS to find backup
resources for those true failure predictions. Second,
due to the high false alarm rate, unnecessary
rescheduling may be incurred, which can cause non-
trivial overhead to system performance. Nevertheless,
from these figures, we can still state that as long as the
false positive rate fp is smaller than 0.65, FARS always
outperforms the regular FCFS.

5.4. Impact of Spare Nodes

In this set of experiments, we change the number of
spare nodes from 1 to 8 in the default parameter
setting. Figure 4(a) – (c) shows the curves of five
performance metrics under different system recovery
policies. The overall performance trend shows small
variations. For each system recovery policy, we
observe that an optimal number of spare nodes exist.
For example, it is 1 for RETRY policy, 2 for RESUME
policy and 5 for RESUBMIT policy. Although the
optimal value generally depends on the system
configuration and usage, the experiments suggest that
we can always conservatively reserve a modest number
of spare nodes (e.g. less than 5% of the overall
computing resources) for fault management to improve
system productivity. For instance, even with only one

In the Proc. of International Conference on Parallel Processing (ICPP’07)

spare node (less then 1% out of 128 nodes), the
performance gain for response time achieved by FARS
is around 42% for RETRY policy, 14.7% for
RESUME policy, and 9% for RESUBMIT policy.
To investigate the feasibility of spare node reservation,

we have studied the distribution of idle nodes on a
number of production systems [7]. The probability
mass functions (PMF) of idle nodes are plotted in
Figure 5. Here, we present the results of two systems:
the 128-node SDSC-SP2 system with 84% utilization
rate and the 400-node SDSC-Paragon system with 71%
utilization rate. They are selected to represent heavily
and moderately loaded systems. The results indicate
that most production systems generally have a couple
of unused nodes during the operation. For example, the
chances that there are more than 2% of idle nodes are
73% and 99% on SDSC-SP2 and SDSC-Paragon
respectively. We have found similar patterns on other
production systems. This observation indicates that it is
feasible to reserve a few nodes as spare nodes for fault-
driven rescheduling used in FARS.

6. Summary

 In this paper, we have presented a fault-driven
rescheduling (FARS) for improving system resilience
to failures, and investigated the effectiveness of
utilizing failure prediction to dynamically adjust the
placement of active jobs. In particular, we have
designed a rescheduling algorithm based on
quantitative performance models. Extensive trace-
based simulations with actual workload and failure
events were conducted to study the performance of the
proposed FARS under a wide range of prediction
accuracies and system parameters. Our preliminary
results indicate that FARS is valuable and has the
potential to significantly improve system resilience to
failures.

Our study has some limitations that remain as our
future work. First, we are in the process of collecting
more workloads and failure events from large-scale
systems to further evaluate the effectiveness of the
proposed FARS. Second, we plan to integrate FARS
with existing scheduling system[21, 23]. We expect
that this combination can further improve the system
performance. Lastly it is also interesting to investigate
other possible rescheduling solutions and evaluating
them with various batch schedulers.

Relative Improvement with RETRY Policy

0%

15%

30%

45%

60%

75%

1 2 3 4 5 6 7 8
Number of Spare Nodes

Resp Util
Thru Workloss
Frate

Relative Improvement with RESUME Policy

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8
Number of Spare Nodes

Resp Util
Thru Workloss
Frate

Relative Improvement with RESUBMIT Policy

-10%

5%

20%

35%

50%

1 2 3 4 5 6 7 8
Number of Spare Nodes

Resp Util
Thru Workloss
Frate

(a) (b) (c)

Figure 4.Relative performance gain of FARS against FCFS with varying number of spare nodes

0%

5%

10%

15%

20%

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127

Pr{ idle nodes ratio>2%} = 0.73

Number of idle nodes

PMF of idle nodes distribution in SDSC-SP2

0%

1%

3%

4%

5%

1 31 61 91 121 151 181 211 241 271 301 331 361 391

PMF of idle nodes distribution in SDSC-Paragon95

Pr{ idle nodes ratio>2%} = 0.99

Number of idle nodes

(a) SDSC-SP2 Cluster (b) SDSC-Paragon Cluster
Figure 5.PMF functions of idle nodes distribution on two clusters

In the Proc. of International Conference on Parallel Processing (ICPP’07)

References

[1] B. Allen, “Monitoring Hard Disk with SMART”, Linux
Journal, January, 2004.
[2] J. Brevik, D. Nurmi, and R. Wolski, “Automatic Methods
for Predicting Machine Availability in Desktop Grid and
Peer-to-Peer Systems”, Proc. of IEEE CCGrid, IEEE
Computer Society, Chicago,IL, 2004, pp. 190-199.
[3] F. Berman, H. Casanova, et al., “New Grid Scheduling
and Rescheduling Methods in the GrADS Project”, Intl.
Journal of Parallel Programming, 2005, pp. 209-229
[4] A. Dogan,F. Ozguner, "Reliable matching and scheduling
of precedence-constrained tasks in heterogeneous distributed
computing,"In Proc. of the ICPP, IEEE Computer Society,
Toronto, Canada, 2000, pp. 307
[5] Cong Du and Xian-He Sun, “MPI-Mitten: Enabling
Migration Technology in MPI”, in Proc. of CCGRID, IEEE
Computer Society, Singapore, 2006, pp. 11-18
[6] Elmootazbellah N. Elnozahy and James S. Plank,
“Checkpointing for Peta-Scale Systems: A Look into the
Future of Practical Rollback-Recovery”, IEEE Transactions
on Dependable and Secure Computing, Volume 1, No 2,
2004, pp. 97-108.
[7] D.Feitelson. Parallel Workloads Archive
http://cs.huji.ac.il/labs/parallel/workload/index.html
[8] P. Gujrati, Y. Li, Z. Lan, R. Thakur, and J. White,
"Exploring Meta-learning to Improve Failure Prediction in
Supercomputing Clusters", in Proc. of ICPP07, 2007
[9] C.-C. Han, K.G. Shin, J. Wu, "A fault-tolerant scheduling
algorithm for real-time periodic tasks with possible software
faults," IEEE Trans. Computers, Vol.52, No.3 pp.362- 372,
2003
[10]] G. Hoffmann, F. Salfner, M. Malek, “Advanced Failure
Prediction in Complex Software Systems”, in Proc. of
SRDS, 2004
[11] K. C. Gross, R. M. Singer, S. W. Wegerich, J. P.
Herzog, R. VanAlstine, and F. Bockhorst, “Application Of A
Model-Based Fault Detection System To Nuclear Plant
Signals", in Proc. of ISAP,Seoul,Korea, 1997, pp. 66-70
[12] Health Application Programming Interface,
http://www.renci.org
[13] C. Leangsuksun et al, “A Failure Predictive and Policy-
Based High Availability Strategy for Linux High
Performance Computing Cluster”, in Proc. of LCI
International Conference on Linux Clusters: The HPC
Revolution 2004, Austin, TX, 2004
[14]IBM LoadLeveler for AIX 5L, available at http:
//publib.boulder.ibm.com
[15] Yawei Li, Zhiling Lan, “Exploit Failure Prediction for
Adaptive Fault-Tolerance in Cluster Computing”, in Proc. of
IEEE CCGrid’06, Singapore,2006,pp. 531-538
[16] Hardware monitoring by lm sensors, available at http:
//secure.netroedge.com/-lm78/info.html.
[17] R. Lawrence, “A Survey of Process Migration
Mechanisms”,http://www.cs.uiowa.edu/~rlawrenc/research/P
apers/proc_mig.pdf
[18] M. Lizkow, T. Tannenbaum, et al., “Checkpoint and
Migration of UNIX Processes in the Condor Distributed

Processing System”, University of Wisconsin-Madison
Computer Science Technical Report #1346, 1997.
[19] Charng-Da Lu, “Scalable Diskless Checkpointing for
Large Parallel Systems”, Ph.D. thesis, University of Illinois
at Urbana-Champaign, 2005
[20] Moab Workload Manager, available at
http://www.clusterresources.com
[21] A. Mu’alem and D. Feitelson, “Utilization,
Predictability, Workloads, and User Runtime Estimates in
Scheduling the IBM SP2 with Backfilling”, in IEEE Trans.
Parallel and Distributed Systems, Vol. 12(6), 2001,pp. 529-
543
[22] A. Oliner, Ramendra K. Sahoo, José E. Moreira, Manish
Gupta, Anand Sivasubramaniam, “Fault-Aware Job
Scheduling for BlueGene/L Systems”, in Proc. of IPDPS,
2004,
[23]Parallel Workloads Archive, available at
http://www.cs.huji.ac.il/labs/parallel/workload/
[24] Petrini, F.; Davis, K.; Sancho, J.C,” System-level fault-
tolerance in large-scale parallel machines with buffered
coscheduling”, in Proc. of IPDPS, 2004, pp. 209
[25] S. Srinivasan, and N.K. Jha, “Safety and Reliability
Driven Task Allocation in Distributed Systems,” in IEEE
Trans. Parallel and Distributed Systems, Vol 10(3), 1999, pp.
238-251
[26] X. Qin and H. Jiang, "A Dynamic and Reliability-driven
Scheduling Algorithmfor Parallel Real-time Jobs on
Heterogeneous Clusters," in Journal of Parallel and
Distributed Computing, vol. 65, no. 8, 2005, pp. 885-900.
[27] Ramendra K. Sahoo, A. Oliner, et al., “Critical Event
Prediction for Proactive Management in Large-scale
Computer Clusters”, in Proc. of KDD, Washington DC,
USA,2003,pp. 426-435
[28] S. Shatz, J. Wang, and M. Goto, “Task Allocation for
Maximizing Reliability of Distributed Computer Systems”,
in IEEE Trans. on Computers, Vol 41(9), 1992,pp. 1156 -
1168
[29] R. Vilalta and S. Ma, “Predicting Rare Events in
Temporal Domains”, in Proc. of IEEE ICDM, 2002, pp.474-
481
[30] Y. Zhang et al., “Performance Implications of Failures
in Large-Scale Cluster Scheduling”, Proc. of 10th Workshop
on JSSPP, held in conjunction with SIGMETRICS , New
York, USA, 2004.

