
Proc. of International Conference on Parallel Processing (ICPP’07)

A Meta-Learning Failure Predictor for Blue Gene/L Systems

Prashasta Gujrati1, Yawei Li1, Zhiling Lan1
Rajeev Thakur2 and John White3

Illinois Institute of Technology1
Argonne National Laboratory2

San Diego Supercomputer Center3

{gujrpra, liyawei, lan}@iit.edu1
thakur@mcs.anl.gov2

whitej@sdsc.edu3

Abstract

The demand for more computational power in

science and engineering has spurred the design and
deployment of ever-growing cluster systems. Even
though the individual components used in these
systems are highly reliable, the presence of large
number of components inevitably increases the failure
probability of such systems. Successful prediction of
potential failures can greatly enhance various fault
tolerance mechanisms used in large clusters, thereby
mitigating the adverse impact of failures on system
productivity and total cost of ownership. In this paper,
we present a three-phase failure predictor to
automatically process RAS events and further discover
failure patterns for prediction in Blue Gene/L systems.
In particular, this paper explores the use of meta-
learning to adaptively integrate base methods with the
goal to boost prediction accuracy. Experiments with
two RAS logs collected from Blue Gene/L systems at
ANL and SDSC demonstrate the effectiveness of the
proposed failure predictor.

1. Introduction

In high performance computing (HPC), the
insatiable demand for more computing power in
science and engineering has driven the development of
ever-growing supercomputers. Large-scale clusters
with hundreds to thousands of processors are being
designed and deployed [26]. For systems of such
scales, reliability is becoming a major concern as the
system-wide MTBF (mean time between failures)
decreases with the increasing count of system

components [18]. With the greater need for fault
resilience in HPC systems, a variety of fault tolerance
techniques have been proposed, such as failure-aware
resource management and scheduling [25],
checkpointing [8, 13], run-time resilience support [3,
20], etc. It is widely accepted that effective failure
analysis and prediction can significantly enhance these
techniques, thereby improving system resilience to
failures and reducing the total cost of ownership.

Recognizing the importance of system reliability,
Blue Gene/L - one of the leading HPC systems - is
deployed with a sophisticated error checking service
called CMCS [24]. This service periodically gathers
RAS (Reliability, Availability, and Serviceability) data
from system components, in a granularity of less than
1 millisecond. Due to the very fine granularity of error
checking and monitoring, a substantial amount of data
can be collected. For instance, a 15-month RAS log
from ANL Blue Gene/L is more than 5 GB. The
potential size of RAS logs makes it a daunting
challenge to not only process the data, but discover
fault patterns from these logs.

To address the above problem, in this paper we
propose a three-phase failure predictor for Blue
Gene/L systems (see Figure 1). During phase 1 “event
preprocessing”, the raw RAS log is cleaned and
categorized. During phase 2 “base prediction”,
different base learning methods are applied on the
preprocessed log to identify fault patterns and
correlations. During phase 3 “meta-learning
prediction”, meta-learning is explored to adaptively
integrate multiple base predictors to boost prediction
accuracy. The ultimate goal of our research is to
provide a framework that can automatically process

Proc. of International Conference on Parallel Processing (ICPP’07)

RAS events collected by CMCS and further discover
failure patterns for prediction in Blue Gene/L systems.

Figure 1. Three-Phase Failure Predictor

A key feature that distinguishes our work from

existing failure prediction research is that we explore
the use of meta-learning to improve prediction
accuracy (i.e. reducing both the false negative and
false positive rate). The proposed framework learns
various fault patterns and correlations by combining
the merits of different base predictors, thereby
reducing both the false positive rate and the false
negative rate. To the best of our knowledge, this is the
first research on applying meta-learning to improve
failure prediction in the context of high performance
computing. In addition, we present a hierarchical
mechanism to categorize RAS events in Blue Gene/L
systems. More specifically, the paper makes the
following major contributions:

• Present the use of meta-learning to boost
prediction accuracy in Blue Gene/L, by
combining the strengths of different base
predictors;

• Develop a generic three-phase framework for
end-to-end failure prediction;

• Evaluate the proposed framework with
production RAS logs, and our preliminary
studies show that it can effectively predict a
number of failures in Blue Gene/L.

The rest of the paper is organized as follows:
Section 2 gives a brief overview of Blue Gene/L and
its RAS logs. Section 3 describes the three-phase
failure predictor – preprocessing, base classifiers and
meta-learning. Section 4 describes the related work on
failure prediction in large clusters. Finally, Section 5
summarizes the paper.

2. Background
2.1. Blue Gene/L Overview

In Blue Gene/L, the computational core consists of
compute and I/O nodes, which are connected in a
regular topology [9]. These cores are controlled from a

service node through a control network. The I/O nodes
are used exclusively for all I/O and this is done
through functional network whereas the compute nodes
are interconnected through a torus network.

The Cluster Monitoring and Control System
(CMCS) service is implemented on the service nodes
for the purpose of system monitoring and error
checking. The service node, which is available in each
midplane, acquires specific device information, such as
fan speeds and power supply voltages, directly through
the control network. Runtime information is collected
from computer and I/O nodes by a polling agent
running on each BLC, reported to the CMCS service,
and finally stored in a centralized DB2 repository. This
system event logging mechanism works in a
granularity of less than 1 millisecond. More details of
the system architecture can be found in published
literature [9].

2.2. RAS Event Logs

Obtaining realistic fault-related data is one of the

key roadblocks to the fault prediction research. Toward
this end, we have acquired RAS (Reliability,
Availability and Serviceability) logs from the Blue
Gene/L systems at ANL and SDSC. The major reason
of using multiple RAS logs is to ensure our framework
is not bias to any specific system and thus produces
representative results expected in other systems as
well.

The Blue Gene/L system at SDSC (San Diego
Supercomputer Center) has a single rack with I/O rich
configuration. It includes 1024 compute nodes (2048
processors) and 128 I/O nodes [27]. The Blue Gene/L
system at ANL (Argonne National Laboratory) has
1024 compute nodes (2048 processors) and 32 I/O
nodes [2]. Both systems are mainly used for scientific
computing. Table 1 summarizes these logs.

 ANL SDSC
Start Date 1/21/2005 12/6/2004
End Date 4/28/2006 2/21/2006
No. of Records 4,172,359 428,953
Log Size 5 GB 540 MB
Table 1: Summary of RAS Logs at SDSC and ANL

The entries in the log are records of all the RAS-

related events that occur across the machine. These
events include hard errors, soft errors, machine checks,
and software problems. Information about scheduled
maintenance, reboot, and repair is not included. Each
record of the logs has a number of attributes which are
described in Table 2.

The SEVERITY attribute can be one of the
following levels - INFO, WARNING, SEVERE,

Proc. of International Conference on Parallel Processing (ICPP’07)

ERROR, FATAL, or FAILURE - which also denotes
the increasing order of severity. INFO events are for
the purpose of general information to administrators
about the reliability of various hardware/services
components in the system. WARNING events report
unusual events in node cards, link cards, service cards
or related services. SEVERE events provide more
information about the reasons causing problems in
node cards or service cards etc. ERROR events
indicate problems that are occurring more frequently
and require further attention of administrators.

Attribute Attribute Description

Event Type Specifies the mechanism through which
the event is recorded, mostly RAS

Event Time Time stamp associated with the reported
event

Job ID Job that detects the event

Location Place of the event (i.e. chip/node-
card/service-card/link-card)

Entry Data Gives a short description of the event

Facility Indicates the services/hardware
component that has experienced the event

Severity Denotes the level of severity of the
reported event

Table 2: Description of attributes in the RAS log

An event with any of the above SEVERITY

attributes is either informative in nature, or is related
more to the initial configuration errors, and is thus
relatively transparent to the applications/runtime
environment. However, FATAL or FAILURE events
(such as “uncorrectable torus error”, “communication
failure socket closed”, “uncorrectable error detected in
edram bank”, etc.) are more severe, and usually lead to
application/software crashes. Our primary focus in this
study is to predict FATAL and FAILURE events
(denoted as fatal events, while other events are denoted
as non-fatal events). In the paper we use “failure” and
“fatal event” interchangeably.

3. Three-phase Predictor
3.1. Phase 1 – Event Preprocessing

The raw logs contain many repeated or redundant
entries. This is because each compute chip runs a
polling agent which collects the errors reported by the
chip. As each job is assigned to multiple compute
chips in a midplane, any failure of the job will get
reported multiple times - once from each of the
assigned compute chips. Thus multiple components
may report the same failure. Also, the CMCS logging
mechanism records the events at a very fine granularity
(in millisecond), but the recorded event time is
generally in seconds leading to multiple entries of an

event with the same timestamp. Therefore, before a
RAS event log can be used for failure prediction in
Blue Gene/L, it is essential to identify unique RAS
events by preprocessing the raw RAS log, which is the
focus of Phase 1. Event preprocessing consists of
three steps: (1) event categorization, (2) temporal
compression at a single location, and (3) spatial
compression across multiple locations.

We develop a hierarchical mechanism for event
categorization in Blue Gene/L. First, all the events are
categorized based on the subsystem in which they
occur, according to the LOCATION field, the
FACILITY field, and the description listed in the
ENTRY DATA field. The high-level categories
include (1) application indicating events related to
application instruction failures, (2) iostreams
indicating events related to socket read/write calls and
I/O procedure calls, (3) kernel indicating events
related to instructions and alignment of data, (4)
memory indicating events related to memory hierarchy,
(5) midplane indicating events related to midplane
configuration and switches, (6) network indicating
events related to torus when compute chip exchange
messages , (7) node card indicating events related to
the operation and configuration of node cards, and (8)
other. Each of them is further grouped at a finer
granularity. Table 3 lists the resulting RAS categories
in Blue Gene/L, where there are totally 101
subcategories.

Main
Category

subc
atego
ries

Examples

Application 12 loadProgramFailure, loginFailure,
nodemapCreateFailure,…

Iostream 8 socketReadFailure,
streamReadFailure,…

Kernel 20 alignmentFailure,
dataAddressFailure,
instructionAddressFailure, …

Memory 22 cachePrefetchFailure,
dataReadFailure,
dataStoreFailure, parityFailure,…

Midplane 6 linkcardFailure,
ciodSignalFailure,
midplaneServiceWarning,…

Network 11 ethernetFailure, rtsFailure,
torusFailure,
torusConnectionErrorInfo,…

NodeCard 10 nodecardDiscoveryError,
nodecardAssemblyWarning,…

Other 12 BGLMasterRestartInfo,
CMCScontrolInfo,
linkcardServiceWarning,…

Table 3. Event Categorization

Next, temporal compression and spatial

Proc. of International Conference on Parallel Processing (ICPP’07)

compression are used to remove duplicate entries by
applying a threshold based technique [17, 23]. With
temporal compression at a single location, events from
the same location with identical values in the JOB_ID
and LOCATION fields are coalesced into a single
entry if reported within the threshold duration of 300
seconds. Results from the compression show that the
amount of compression of FAILURE events achieved,
is not significant when threshold values greater than
300 seconds is used for temporal compression.
Additionally, as RAS events are logged at a sub-
second frequency, taking a higher threshold value will
increase the chances of different events being clustered
together. With spatial compression across multiple
locations, we remove those entries that are close to
each other within time duration of 300 seconds, with
the same ENTRY_DATA and JOB_ID, but from
different locations.

This three-step event preprocessing provides a list
of unique events which can then be used for the
purpose of generating a prediction model as described
in the following subsections.

Results. Table 4 summarizes the number of
compressed fatal events from ANL and SDSC logs,
which are divided into eight high-level event
categories. As has been studied by Oliner et al., some
of these failures are not true/actual failures from the
perspective of applications and such failures do not
result in abnormal termination of user jobs [6]. Our
future work will incorporate filtering out this
ambiguity of failures and analyze only those failures
which will impact user jobs.

Main Category ANL SDSC
Application 762 587
Iostream 1173 905
Kernel 224 182
Memory 52 25
Midplane 102 97
Network 482 366
Node Card 20 17
Other 8 3

TOTAL 2823 2182
Table 4. Distribution of Compressed Fatal Events

3.2. Phase 2 – Base Prediction

While a number of predictive methods have been
developed to date, in this study we will examine the
use of two methods (i.e. statistical based method and
association rule based method) as base predictors. We
first describe these base prediction methods, followed
by a discussion of their strengths and drawbacks.

Before presenting our prediction methodology, let’s
first describe performance metrics to measure

prediction accuracy. A standard way of measuring the
effectiveness of failure prediction is by calculating
precision and recall. Precision is defined as the
proportion of correct predictions to all the predictions
made, i.e. Tp / (Tp + Fp), and Recall is the proportion of
correct predictions made to all the predictions that are
possible, i.e. Tp / (Tp + Fn). Here, Tp is number of
correct predictions (i.e. true positive), and Fp is number
of false alarms (i.e. false positive), and Fn is number of
incorrect non-failure predictions (i.e. false negative).
A good prediction engine provides a high value (closer
to 1.0) for both precision and recall.

In the rest of the paper, to evaluate the effectiveness
of prediction methods, we use a standard n-fold cross-
validation technique for the learning and testing. That
is, the log is divided into n folds of equal size and then
the (n-1) folds are used as training set for learning and
the last fold is used for prediction and testing. As a
result, there are n such results, which are then averaged
to calculate the prediction accuracy. This technique
provides a fair evaluation of prediction methods. In our
experiments we have used 10-fold cross-validation.

3.2.1. Statistical-based Method

 Statistical based methods emphasize on discovering
probabilistic characteristics among failure events and
then using the obtained characteristics for failure
prediction. Similar to the work done earlier [22], our
statistical based method utilizes the statistical
characteristics of fatal events for failure prediction.
More specifically, the statistical-based predictor works
as follows:

Step 1: On the learning set, obtain and verify
statistical characteristics of failures (e.g. temporal
correlations) from the training data;

Step 2: On the testing set, produce a warning if
statistical patterns are observed in a fixed time window
before the occurrence of the failure on the testing data.

Results. With both RAS logs, we investigate
statistical correlations among fatal events in the
training set, i.e. how often and with what probability
will the occurrence of one failure influence subsequent
failures. Figure 2(a) and 3(b) show the cumulative
distribution function (CDF) of compressed failures for
the ANL and SDSC logs respectively. We observe that
a significant number of failures happen in close
proximity, and our further analysis indicates that
network and I/O stream related failures form a
majority of such failures.

Such a temporal correlation between fatal events is
then used for failure prediction in the testing set. That
is, if a network or I/O stream failure is reported, it is
predicted that another failure is possible within a time

Proc. of International Conference on Parallel Processing (ICPP’07)

period of 5 minutes to 1 hour. The reason for choosing
this duration is that a time window smaller than 5
minutes becomes too small for taking preventive action
based on the prediction, whereas a time window larger
than 1 hour will induce an increased monitoring load
on the system if such a scheme is implemented in an
online system as it will require maintaining the history
of all the events for the duration of 1 hour after a
failure has been reported. Also, the processing/analysis
cost of these events for failure prediction may not be
trivial. The values of precision and recall for both the
logs are shown in Table 5.

0.45

0.55

0.65

0.75

0.85

0.95

1 100 10000 1000000 100000000

Inter Failure time (s)

fa
ilu

re
 p

ro
ba

bi
lit

y

0.45

0.55

0.65

0.75

0.85

0.95

1 100 10000 1000000 100000000

Inter arrival time (s)

Fa
ilu

re
 p

ro
ba

bi
lit

y

 (a) ANL (b) SDSC

Figure 2.CDF of Failure Probability

Log Name Precision Recall
ANL 0.5157 0.4872
SDSC 0.2837 0.3117
Table 5. Prediction Results by Using Statistical

Correlation between Fatal Events

Discussion. A drawback with this prediction

strategy is that precision is low as the number of
failures which do not have subsequent failures
occurring in the next time window is substantial.
Another drawback is that apart from I/O stream and
network failures, none of other categories of failures
has such a temporal correlation. As shown in Table 4,
other types of failures constitute 42% of the failures in
both the logs, hence a substantial number of failures
cannot be predicted by using this method. Further, as
can be observed in Table 5, the precision and recall
values may vary significantly for different Blue
Gene/L systems.

3.2.2. Rule-based Method

 Next, we examine causal correlations between non-
fatal and fatal events and then use the correlations for
failure prediction. A widely used technique for
extracting such a causal correlation is to build
association rules.

Association rules were first introduced by Agrawal
et al. to analyze customer habits in retail databases [1].
Association rule is an implication of the form X→Y,
where the rule body X and head Y are subsets of the set
I of items (I = {I1, I2,....,In}) within a set of itemsets D
and X ∩ Y = Φ. A rule X→Y states that the transactions

T that contain the items in X are likely to contain also
the items in Y. Association rules are characterized by
two measures: the support, which measures the
percentage of transactions in D that contain both items
X and Y; the confidence, which measures the
percentage of itemsets in D containing the items X that
also contain the items Y. The problem of mining
association rules from a set of itemsets D consists of
generating all the association rules from a set of items
that have support and confidence greater than user-
defined thresholds.

Lower value of support and confidence will
generate larger amount of rules, thereby requiring
longer time and more memory space to build the rules.
Higher value of support and confidence will reduce the
number of frequent itemsets and thereby reduce the
number of generated rules, and consequently reduce
the time and memory required for rule generation.
However, the lesser number of rules, in turn, reduces
the opportunities of capturing causal relationships
among items, thereby reducing the rate of discovering
fault patterns. We have set the minimal value for
support as of 0.04 and confidence of 0.2 in our
experiments. The low values for the parameters ensure
that even if a failure event is reported very infrequently
but it leads to a rule which is very strong, then it gets
generated. This avoids the problem of infrequent items
which may happen if higher values of support are
used. Parameter values lower than these lead to
exhaustion of compute resources because of generation
of too many rules.

Our rule based method works as follows:
Step 1: On the learning set, for each fatal event

identify the set of non-fatal events frequently
preceding it within a fixed time window (i.e. rule
generation window). The set, including the fatal event
and their precursor nonfatal events, is called an event-
set.

Step 2: Apply the standard association rule
algorithm to build rule models for event-sets that are
above the minimum user-defined support [1, 15].

Step 3: Combine rules as we focus on predicting
whether there is an imminent failure. For example, if
{e1,e2,…,ek}→f1 and {e1,e2,…,ek}→f2 are generated by
Step 2, we combine them as {e1,e2,…,ek}→ {f1,f2}.

Step 4: Sort the generated rules in descending
order of their confidence values.

Step 5: Evaluate rules generated with different rule
generation windows, and select the window size that
can best capture a variety of fault patterns between
non-fatal and fatal events.

Step 6: On the testing set, use the rules generated
to produce a warning if an association rule is observed
within a fixed time window (i.e. prediction window)

Proc. of International Conference on Parallel Processing (ICPP’07)

before the occurrence of the failure. If multiple rules
are observed, select the rule with the highest
confidence.

To determine the optimum size of the rule
generation window, we conducted experiments with
window size ranging from 5 minutes to 1 hour. From
the observed values of precision and recall for each of
the rule generation window, we chose the window size
which gives the best precision with highest recall.
Thus, the rule generation window is 15 minutes for
ANL log and 25 minutes for SDSC log. These rule
generation windows were used for subsequent failure
prediction in the testing set as described in Step 6.

Figure 3. Partial List of Generated Association Rules with

Their Confidence Values

Results. Figure 3 shows a partial list of generated
rules along with their confidence values. Figure 4
presents the results of precision and recall for ANL
and SDSC logs. As we can see, the precision value is
in the range of 0.7 – 0.9, while recall is not as
satisfying (ranging between 0.22 and 0.55). The
figures also show that as the prediction window
increases, recall improves without a substantial loss in
precision.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

300 600 900 1200 1500 1800 2100 2700 3600

timeWindow(s)

Precision

Recall

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

300 600 900 1200 1500 1800 2100 2700 3600

timeWindow(s)

Precision

Recall

Figure 4. Prediction Results (left ANL, right SDSC)

As observed in Figure 4, the recall value is always

smaller than 0.55 even when a larger prediction
window is used. By further analysis, we find that a
substantial number of failures (i.e. 31%-66% of
failures from the ANL log and 47%-75% of failures
from the SDSC log) do not have any precursor non-
fatal events.

Discussion. In short, the rule-based predictor can
effectively capture causal relationships among RAS
events (e.g. high precision values); however, it is
limited by the proportion of fatal events without any
precursor warnings (e.g. low recall values).

3.3. Phase 3 – Meta-Learning Prediction

 As shown in Section 3.2, it is unlikely to produce
an effective failure prediction by using either of base
predictors alone. The statistical based method is
effective in leveraging the temporal correlation among
fatal events, but suffers from low coverage of failures
and cannot capture causal relationships between non-
fatal events and fatal events, thereby ending up with
low prediction accuracy. The rule based prediction
method is good at discovering causal relationships
between non-fatal and fatal events, but its effectiveness
is limited by the portion of fatal events without any
precursor events. To address the problem, a meta-
learning mechanism is explored in our framework to
boost failure prediction.

Meta-learning or ensemble-learning can be loosely
defined as learning from learned knowledge [7]. It is a
technique that deals with the problem of computing a
“global” predictor from the separately learned “base
predictors” to boost overall predictive effectiveness
[4]. In particular, it learns to identify preferable
combinations of based classifiers as well as their
quantitative performance effects from previous results.
A widely used approach is called stacked
generalizations, in which three metrics, namely
conflict, coverage, and diversity, are developed to
measure its accuracy [4]. Another important approach
is called reinforcement learning which attempts to take
the right bias according to the type of input-output
distributions [21].

Our meta-learner uses the coverage based stacked
generalization which adaptively integrates the
statistical based method and the rule based method.
More specifically, it works as follows:
• On the learning set, (1) obtain the statistical

characteristics of failures with corresponding
confidence values as described in §3.2.1 (Step 1);
(2) generate association rules between nonfatal
and fatal events with corresponding confidence
values as presented in §3.2.2 (Step 1- 5);

• On the testing set, observe the events within a
fixed time window before the occurrence of a
failure: (1) if there are nonfatal events, apply the
rule based method for the discovery of fault
patterns and produce a warning in case of
matching rules; (2) if no nonfatal event is
observed, examine the occurrence of fatal events
and apply the statistical based method for failure
prediction; (3) if both fatal and non-fatal events
are presented, use the base method that produces a
prediction with higher confidence.

Proc. of International Conference on Parallel Processing (ICPP’07)

Results. The prediction results obtained by using
the proposed meta-learner are presented in Figure 5.
As we can see, with both RAS logs, the prediction
accuracy is significantly improved: (1) with the ANL
log, the precision decreases from 0.88 to 0.65, while
the recall increases from 0.64 to 0.78 as the prediction
window increases from 5 minutes to 1 hour; (2) with
the SDSC log, the precision decreases from 0.99 to
0.89, whereas the recall is always around 0.65 as the
prediction window increases from 5 minutes to 1 hour.
Further, the precision decrease is more pronounced for
results in ANL log as compared to SDSC log. This is
so because the number of high confidence rules
generated in ANL is less when compared to the rules
learnt in SDSC resulting in higher false positive values
which affect the precision of prediction.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

300 600 900 1200 1500 1800 2100 2700 3600

timeWindow(s)

Precision

Recall

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

300 600 900 1200 1500 1800 2100 2700 3600

timeWindow(s)

Precision

Recall

Figure 5. Meta-learning Results (left ANL, right SDSC)

As discussed in the previous sub-sections, recall

was ranging from 0.22 to 0.55 for both the RAS logs
by using either of base prediction methods. We also
observed a high precision for rule based method but
low for the statistical method (as given in Table 5).
Compared to either of these predictors, the combined
meta-learner has recall which is consistently more than
0.65 for all prediction windows along with a
consistently high value for precision. Thus, the meta-
learner based predictor can significantly boost the
prediction accuracy.

Discussion. The main reason for such a significant
improvement is that in a large cluster such as Blue
Gene/L, the sources of failures are many and complex,
thus it is improbable for a base prediction method to
capture all of them alone. Instead, a meta-learning
based approach can combine the strengths of multiple
base predictors and discover various failures to give
better failure prediction results.

The meta-learning strategy is simple and time
efficient. Its overall cost is about the same as the rule-
based method: the rule generation process varies from
35 seconds for a 5-minute prediction window to 167
seconds for a 1-hour prediction window; and the rule
matching process is trivial. Therefore, it is practical to
deploy the meta-learner as an online prediction engine.

4. Related Work

Generally speaking, fault prediction can be
approached from two different angles: model-based or
data-driven. A model-based approach derives a
probabilistic or analytical model of the system [12]. A
warning is triggered when a deviation from the model
is detected [16]. Examples include an adaptive
statistical data fitting method called MSET developed
by Gross et al. [24], a Semi-Markov reward model
[30], a neutral-network based classification for
forecasting hardware failures [29], a naive Bayesian
based algorithm for predicting disk drive failures [14],
etc. Most of them either focus on specific types of
failures or target small scale systems, thus not
sufficient for large clusters.

Data-driven approaches, such as using data mining
in combination with intelligent systems, focus on
learning and classifying occurring faults from
historical data without assuming a priori model ahead
of time. There are several recent research efforts on
failure prediction in large clusters. Vilalta and Ma
apply frequent itemset mining for failure prediction in
a networked system comprising 750 hosts [19]. Sahoo
et al. present several methods, including a rule-based
data mining method, to predict a set of target failure
events in a 350-node IBM cluster [28]. Perhaps, the
work by Liang et al. is the most closely related work to
ours [22]. The paper focuses on utilizing statistical
characteristics among RAS events (e.g. spatial or
temporal correlation) for prediction in a Blue Gene/L
system. Different from these studies, our work
emphasizes on exploiting meta-learning to boost
failure prediction by combining statistical based
method and rule based method. In a recent work [6],
Oliner et al. has also pointed out the importance of
using ensemble learning for failure prediction in large-
scale clusters.

In [23], the authors give a detailed filtering process
for a Blue Gene/L log. Our proposed framework
utilizes a similar filtering process for log
preprocessing. The major difference is that we
categorize RAS events at a much finer granularity,
which is useful in capturing more detailed fault
patterns.

5. Summary

In this paper, we have presented a three-phase
framework for failure prediction in Blue Gene/L,
namely event preprocessing, base prediction and
meta-learning prediction. In particular, we have
proposed the use of meta-learning for improving

Proc. of International Conference on Parallel Processing (ICPP’07)

failure prediction in large scale clusters such as Blue
Gene/L. The proposed framework adaptively integrates
and combines two widely used base prediction
methods (i.e. statistical based method and rule-based
method) for discovering various fault modes (e.g.
temporal correlations among failures and causal
correlations among non-fatal and fatal events). Our
preliminary results are promising. As compared to
using a base predictor alone, the proposed meta-
learning prediction can significantly improve failure
accuracy by up to three times. Our primary goal is to
open up further research on designing effective failure
analysis and prediction systems for large-scale clusters,
in particular those used in high performance
computing. Further, the proposed meta-learning
mechanism should be further examined for advancing
failure prediction in large clusters.

Although in this paper we focus on Blue Gene/L,
we believe the proposed three-phase framework can be
extended for general failure analysis and prediction in
other large-scale clusters. For large-scale clusters
which do not have a CMCS type of facility, the key
issue is how to develop a monitoring tool which is
capable of gathering fault-related information from
low-level devices and archive the information in a
centralized repository. This data can then be used by
the three-phase framework for failure analysis and
prediction.

References

[1] R. Agrawal, R. Srikant, “Fast Algorithms for Mining
Association Rules”, VLDB. Sep 12-15 1994, Chile, 487-99
[2] ANL Blue Gene/L Homepage.. www.bgl.mcs.anl.gov
[3] S. Chakravorty, C. L. Mendes and L. V. Kale, “Proactive
Fault Tolerance in Large Systems”, Proc. of HPCRI
Workshop in conjunction with HPCA, 2005.
[4] P. Chan and S. Stolfo, “Metalearning for Multistrategy
and Parallel Learning”, Proc. of Multistrategy Learning
Workshop, Center for Artificial Intelligence, 1993.
[6] A. Oliner and J. Stearly, “What Supercomputers Say: A
Study of Five System Logs”, Proc. of DSN 2007.
[7] R. Polikar, “Ensemble Based Systems in Decision
Making”, IEEE Circuits and Systems Magazine,
vol.6, no. 3, pp. 21-45, 2006.
[8] E. Elnozahy and J. S. Plank, “Checkpointing for Peta-
Scale Systems: A Look into the Future of Practical Rollback-
Recovery”, IEEE Transactions on Dependable and Secure
Computing, Volume 1, Number 2, 2004, pp. 97-108.
[9] A. Gara, M. A. Blumrich et al., “Overview of the Blue
Gene/L System Architecture”, IBM J. Res. & Dev. 49,
No. 2/3, 195–212, 2005.
[10] M. Goldszmidt, I. Cohen, A. Fox and S. Zhang, “Three
research challenges at the intersection of machine learning,
statistical induction, and systems”, HOTOS 2005.
[11] Hoffmann, Salfner et al, “Advanced Failure Prediction

in Complex Software Systems”, Proc. of SRDS, 2004.
[12] A. Goyal, S. Lavenberg, and K. Trivedi, “Probabilistic
Modeling of Computer System Availability”, Annals of
Operations Research, 1987.
[13] R. Gioiosa, J. Sancho, S. Jiang, F. Petrini, K. Davis,
“Transparent Incremental Checkpointing at Kernel Level: A
Foundation for Fault Tolerance for Parallel Computers”,
Proc. of SC2005, 2005.
[14] G. Hamerly and C. Elkan, “Bayesian Approaches to
Failure Prediction for Disk Drives”, Proc. of ICML, 2001.
[15] J. Han, J. Pei, Y. Yin, R. Mao, “Mining Frequent
Patterns without Candidate Generation: A Frequent-Pattern
Tree Approach”, Data Min. Knowl. Discov. 8 (1): 53-87
2004.
[16] J. Hellerstein, F. Zhang, P. Shahabuddin, “A Statistical
Approach to Predictive Detection”, Computer Networks: The
International Journal of Computer and Telecommunications
Networking, 2001.
[17] R. K. Iyer, L. T. Young, V. Sridhar, “Recognition of
error symptoms in large systems”, Proceedings of 1986 ACM
Fall joint computer conference, 1986.
[18] D. Kerbyson, A. Hoisie, and H. Wasserman, “Use of
Predictive Performance Modeling During Large-scale
Systems Installation”, Proc. of the 1st International
Workshop on Hardware/Software Support for Parallel and
Distributed Scientific and Engineering Computing, 2002.
[19] R. Vilalta and S. Ma, “Predicting Rare Events in
Temporal Domains”, Proc. of IEEE Intl. Conf. On Data
Mining, 2002.
[20] Y. Li, Z. Lan, “Exploit Failure Prediction for Adaptive
Fault-Tolerance in Cluster Computing”, Proc. of IEEE
CCGrid’06, 2006.
[21] L. Lanzi, W. Stolzmann, S. Wilson, “Learning Classifier
Systems, From Foundations to Applications”, Lecture Notes
In Computer Science,Vol. 1813, 2000.
[22] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramanium, R.
Sahoo, “BlueGene/L Failure Analysis and Prediction
Models”, Proc. of DSN, 2006.
[23] Y. Liang, Y. Zhang, A. Sivasubramanium, R. Sahoo, J
Moreira, M. Gupta, “Filtering Failure Logs for a BlueGene/L
Prototype”, Proc. of DSN, 2005.
[34] K. Vaidyanathan and K. Gross, “MSET Performance
Optimization for Detection of Softtware Aging”, Proc. of
ISSRE, 2003.
[25] A. Oliner, Ramendra K. Sahoo, José E. Moreira, Manish
Gupta, Anand Sivasubramaniam, “Fault-Aware Job
Scheduling for BlueGene/L Systems”, IPDPS, 2004.
[26] The TOP500 Supercomputer Sites. www.top500.org
[27] SDSC Blue Gene/L Homepage.
www.sdsc.edu/us/resources/bluegene
[28] R.K. Sahoo, A.J. Oliner et al., “Critical event prediction
for proactive management in large-scale computer clusters”,
Proc. of KDD, 2003, pp. 426-435.
[29] D. Turnbull, N. Alldrin, “Failure Prediction in Hardware
Systems”, UCSD CSE221 Project, 2003.
[30] K. Trivedi and K. Vaidyanathan, “A Measurement-
based Model for Estimation of Resource Exhaustion in
Operational Software Systems”, Proc. of the 10th Int’l
Symposium on Software Reliability Engineering, 1999.

