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Abstract 

 
The demand for more computational power in 

science and engineering has spurred the design and 
deployment of ever-growing cluster systems. Even 
though the individual components used in these 
systems are highly reliable, the presence of large 
number of components inevitably increases the failure 
probability of such systems. Successful prediction of 
potential failures can greatly enhance various fault 
tolerance mechanisms used in large clusters, thereby 
mitigating the adverse impact of failures on system 
productivity and total cost of ownership. In this paper, 
we present a three-phase failure predictor to 
automatically process RAS events and further discover 
failure patterns for prediction in Blue Gene/L systems. 
In particular, this paper explores the use of meta-
learning to adaptively integrate base methods with the 
goal to boost prediction accuracy. Experiments with 
two RAS logs collected from Blue Gene/L systems at 
ANL and SDSC demonstrate the effectiveness of the 
proposed failure predictor.  
 
1. Introduction 
 

In high performance computing (HPC), the 
insatiable demand for more computing power in 
science and engineering has driven the development of 
ever-growing supercomputers. Large-scale clusters 
with hundreds to thousands of processors are being 
designed and deployed [26]. For systems of such 
scales, reliability is becoming a major concern as the 
system-wide MTBF (mean time between failures) 
decreases with the increasing count of system 

components [18]. With the greater need for fault 
resilience in HPC systems, a variety of fault tolerance 
techniques have been proposed, such as failure-aware 
resource management and scheduling [25], 
checkpointing [8, 13], run-time resilience support [3,  
20], etc. It is widely accepted that effective failure 
analysis and prediction can significantly enhance these 
techniques, thereby improving system resilience to 
failures and reducing the total cost of ownership.  

Recognizing the importance of system reliability, 
Blue Gene/L - one of the leading HPC systems - is 
deployed with a sophisticated error checking service 
called CMCS [24]. This service periodically gathers 
RAS (Reliability, Availability, and Serviceability) data 
from system components, in a granularity of less than 
1 millisecond. Due to the very fine granularity of error 
checking and monitoring, a substantial amount of data 
can be collected.  For instance, a 15-month RAS log 
from ANL Blue Gene/L is more than 5 GB. The 
potential size of RAS logs makes it a daunting 
challenge to not only process the data, but discover 
fault patterns from these logs. 

To address the above problem, in this paper we 
propose a three-phase failure predictor for Blue 
Gene/L systems (see Figure 1). During phase 1 “event 
preprocessing”, the raw RAS log is cleaned and 
categorized. During phase 2 “base prediction”, 
different base learning methods are applied on the 
preprocessed log to identify fault patterns and 
correlations. During phase 3 “meta-learning 
prediction”, meta-learning is explored to adaptively 
integrate multiple base predictors to boost prediction 
accuracy. The ultimate goal of our research is to 
provide a framework that can automatically process 
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RAS events collected by CMCS and further discover 
failure patterns for prediction in Blue Gene/L systems. 

 
Figure 1. Three-Phase Failure Predictor 

 
A key feature that distinguishes our work from 

existing failure prediction research is that we explore 
the use of meta-learning to improve prediction 
accuracy (i.e. reducing both the false negative and 
false positive rate).  The proposed framework learns 
various fault patterns and correlations by combining 
the merits of different base predictors, thereby 
reducing both the false positive rate and the false 
negative rate. To the best of our knowledge, this is the 
first research on applying meta-learning to improve 
failure prediction in the context of high performance 
computing. In addition, we present a hierarchical 
mechanism to categorize RAS events in Blue Gene/L 
systems. More specifically, the paper makes the 
following major contributions: 

• Present the use of meta-learning to boost 
prediction accuracy in Blue Gene/L, by 
combining the strengths of different base 
predictors; 

• Develop a generic three-phase framework for 
end-to-end failure prediction;  

• Evaluate the proposed framework with 
production RAS logs, and our preliminary 
studies show that it can effectively predict a 
number of failures in Blue Gene/L. 

The rest of the paper is organized as follows: 
Section 2 gives a brief overview of Blue Gene/L and 
its RAS logs. Section 3 describes the three-phase 
failure predictor – preprocessing, base classifiers and 
meta-learning. Section 4 describes the related work on 
failure prediction in large clusters. Finally, Section 5 
summarizes the paper. 

 
2. Background 
2.1. Blue Gene/L Overview 
 

In Blue Gene/L, the computational core consists of 
compute and I/O nodes, which are connected in a 
regular topology [9]. These cores are controlled from a 

service node through a control network. The I/O nodes 
are used exclusively for all I/O and this is done 
through functional network whereas the compute nodes 
are interconnected through a torus network.  

The Cluster Monitoring and Control System 
(CMCS) service is implemented on the service nodes 
for the purpose of system monitoring and error 
checking. The service node, which is available in each 
midplane, acquires specific device information, such as 
fan speeds and power supply voltages, directly through 
the control network. Runtime information is collected 
from computer and I/O nodes by a polling agent 
running on each BLC, reported to the CMCS service, 
and finally stored in a centralized DB2 repository. This 
system event logging mechanism works in a 
granularity of less than 1 millisecond. More details of 
the system architecture can be found in published 
literature [9]. 

 
2.2. RAS Event Logs 

 
Obtaining realistic fault-related data is one of the 

key roadblocks to the fault prediction research. Toward 
this end, we have acquired RAS (Reliability, 
Availability and Serviceability) logs from the Blue 
Gene/L systems at ANL and SDSC.  The major reason 
of using multiple RAS logs is to ensure our framework 
is not bias to any specific system and thus produces 
representative results expected in other systems as 
well.  

The Blue Gene/L system at SDSC (San Diego 
Supercomputer Center) has a single rack with I/O rich 
configuration. It includes 1024 compute nodes (2048 
processors) and 128 I/O nodes [27]. The Blue Gene/L 
system at ANL (Argonne National Laboratory) has 
1024 compute nodes (2048 processors) and 32 I/O 
nodes [2]. Both systems are mainly used for scientific 
computing. Table 1 summarizes these logs. 

 ANL SDSC 
Start Date  1/21/2005 12/6/2004 
End Date  4/28/2006 2/21/2006 
No. of Records 4,172,359 428,953 
Log Size  5 GB 540 MB 
Table 1: Summary of RAS Logs at SDSC and ANL 

 
The entries in the log are records of all the RAS-

related events that occur across the machine. These 
events include hard errors, soft errors, machine checks, 
and software problems.  Information about scheduled 
maintenance, reboot, and repair is not included. Each 
record of the logs has a number of attributes which are 
described in Table 2. 

The SEVERITY attribute can be one of the 
following levels - INFO, WARNING, SEVERE, 
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ERROR, FATAL, or FAILURE - which also denotes 
the increasing order of severity. INFO events are for 
the purpose of general information to administrators 
about the reliability of various hardware/services 
components in the system. WARNING events report 
unusual events in node cards, link cards, service cards 
or related services. SEVERE events provide more 
information about the reasons causing problems in 
node cards or service cards etc. ERROR events 
indicate problems that are occurring more frequently 
and require further attention of administrators. 

Attribute  Attribute Description 

Event Type Specifies the mechanism through which 
the event is recorded, mostly RAS 

Event Time Time stamp associated with the reported 
event 

Job ID Job that detects the event 

Location Place of the event (i.e. chip/node-
card/service-card/link-card) 

Entry Data Gives a short description of the event 

Facility Indicates the services/hardware 
component that has experienced the event 

Severity Denotes the level of severity of the 
reported event 

Table 2: Description of attributes in the RAS log 
 
An event with any of the above SEVERITY 

attributes is either informative in nature, or is related 
more to the initial configuration errors, and is thus 
relatively transparent to the applications/runtime 
environment. However, FATAL or FAILURE events 
(such as “uncorrectable torus error”, “communication 
failure socket closed”, “uncorrectable error detected in 
edram bank”, etc.) are more severe, and usually lead to 
application/software crashes. Our primary focus in this 
study is to predict FATAL and FAILURE events 
(denoted as fatal events, while other events are denoted 
as non-fatal events). In the paper we use “failure” and 
“fatal event” interchangeably. 

 
3. Three-phase Predictor 
3.1. Phase 1 – Event Preprocessing 
 

The raw logs contain many repeated or redundant 
entries. This is because each compute chip runs a 
polling agent which collects the errors reported by the 
chip. As each job is assigned to multiple compute 
chips in a midplane, any failure of the job will get 
reported multiple times - once from each of the 
assigned compute chips. Thus multiple components 
may report the same failure. Also, the CMCS logging 
mechanism records the events at a very fine granularity 
(in millisecond), but the recorded event time is 
generally in seconds leading to multiple entries of an 

event with the same timestamp. Therefore, before a 
RAS event log can be used for failure prediction in 
Blue Gene/L, it is essential to identify unique RAS 
events by preprocessing the raw RAS log, which is the 
focus of Phase 1.  Event preprocessing consists of 
three steps: (1) event categorization, (2) temporal 
compression at a single location, and (3) spatial 
compression across multiple locations.  

We develop a hierarchical mechanism for event 
categorization in Blue Gene/L. First, all the events are 
categorized based on the subsystem in which they 
occur, according to the LOCATION field, the 
FACILITY field, and the description listed in the 
ENTRY DATA field. The high-level categories 
include (1) application indicating events related to 
application instruction failures, (2) iostreams 
indicating events related to socket read/write calls and 
I/O procedure calls, (3)  kernel indicating events 
related to instructions and alignment of data, (4) 
memory indicating events related to memory hierarchy, 
(5) midplane indicating events related to midplane 
configuration and switches, (6) network indicating 
events related to torus when compute chip exchange 
messages , (7) node card  indicating events related to 
the operation and configuration of node cards, and (8) 
other. Each of them is further grouped at a finer 
granularity. Table 3 lists the resulting RAS categories 
in Blue Gene/L, where there are totally 101 
subcategories. 

Main 
Category 

subc
atego
ries 

Examples  

Application 12 loadProgramFailure, loginFailure, 
nodemapCreateFailure,… 

Iostream 8 socketReadFailure, 
streamReadFailure,… 

Kernel 20 alignmentFailure, 
dataAddressFailure, 
instructionAddressFailure, … 

Memory 22 cachePrefetchFailure, 
dataReadFailure, 
dataStoreFailure, parityFailure,… 

Midplane 6 linkcardFailure, 
ciodSignalFailure, 
midplaneServiceWarning,… 

Network 11 ethernetFailure, rtsFailure, 
torusFailure, 
torusConnectionErrorInfo,… 

NodeCard 10 nodecardDiscoveryError, 
nodecardAssemblyWarning,… 

Other 12 BGLMasterRestartInfo, 
CMCScontrolInfo, 
linkcardServiceWarning,… 

Table 3. Event Categorization 
 
Next, temporal compression and spatial 
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compression are used to remove duplicate entries by 
applying a threshold based technique [17, 23]. With 
temporal compression at a single location, events from 
the same location with identical values in the JOB_ID 
and LOCATION fields are coalesced into a single 
entry if reported within the threshold duration of 300 
seconds. Results from the compression show that the 
amount of compression of FAILURE events achieved, 
is not significant when threshold values greater than 
300 seconds is used for temporal compression. 
Additionally, as RAS events are logged at a sub-
second frequency, taking a higher threshold value will 
increase the chances of different events being clustered 
together. With spatial compression across multiple 
locations, we remove those entries that are close to 
each other within time duration of 300 seconds, with 
the same ENTRY_DATA and JOB_ID, but from 
different locations.  

This three-step event preprocessing provides a list 
of unique events which can then be used for the 
purpose of generating a prediction model as described 
in the following subsections. 

Results. Table 4 summarizes the number of 
compressed fatal events from ANL and SDSC logs, 
which are divided into eight high-level event 
categories. As has been studied by Oliner et al., some 
of these failures are not true/actual failures from the 
perspective of applications and such failures do not 
result in abnormal termination of user jobs [6]. Our 
future work will incorporate filtering out this 
ambiguity of failures and analyze only those failures 
which will impact user jobs. 

Main Category ANL SDSC 
Application 762 587 
Iostream 1173 905 
Kernel 224 182 
Memory 52 25 
Midplane 102 97 
Network 482 366 
Node Card 20 17 
Other 8 3 

TOTAL 2823 2182 
Table 4. Distribution of Compressed Fatal Events 

 
3.2. Phase 2 – Base Prediction 
 

While a number of predictive methods have been 
developed to date, in this study we will examine the 
use of two methods (i.e. statistical based method and 
association rule based method) as base predictors.  We 
first describe these base prediction methods, followed 
by a discussion of their strengths and drawbacks. 

Before presenting our prediction methodology, let’s 
first describe performance metrics to measure 

prediction accuracy. A standard way of measuring the 
effectiveness of failure prediction is by calculating 
precision and recall. Precision is defined as the 
proportion of correct predictions to all the predictions 
made, i.e. Tp / (Tp + Fp), and Recall is the proportion of 
correct predictions made to all the predictions that are 
possible, i.e. Tp / (Tp + Fn). Here, Tp is number of 
correct predictions (i.e. true positive), and Fp is number 
of false alarms (i.e. false positive), and Fn is number of 
incorrect non-failure predictions (i.e. false negative).  
A good prediction engine provides a high value (closer 
to 1.0) for both precision and recall.  

In the rest of the paper, to evaluate the effectiveness 
of prediction methods, we use a standard n-fold cross-
validation technique for the learning and testing.  That 
is, the log is divided into n folds of equal size and then 
the (n-1) folds are used as training set for learning and 
the last fold is used for prediction and testing. As a 
result, there are n such results, which are then averaged 
to calculate the prediction accuracy. This technique 
provides a fair evaluation of prediction methods. In our 
experiments we have used 10-fold cross-validation. 

 
3.2.1. Statistical-based Method  
 
     Statistical based methods emphasize on discovering 
probabilistic characteristics among failure events and 
then using the obtained characteristics for failure 
prediction. Similar to the work done earlier [22], our 
statistical based method utilizes the statistical 
characteristics of fatal events for failure prediction. 
More specifically, the statistical-based predictor works 
as follows:   

Step 1: On the learning set, obtain and verify 
statistical characteristics of failures (e.g. temporal 
correlations) from the training data; 

Step 2:  On the testing set, produce a warning if 
statistical patterns are observed in a fixed time window 
before the occurrence of the failure on the testing data.  

Results. With both RAS logs, we investigate 
statistical correlations among fatal events in the 
training set, i.e. how often and with what probability 
will the occurrence of one failure influence subsequent 
failures. Figure 2(a) and 3(b) show the cumulative 
distribution function (CDF) of compressed failures for 
the ANL and SDSC logs respectively. We observe that 
a significant number of failures happen in close 
proximity, and our further analysis indicates that 
network and I/O stream related failures form a 
majority of such failures. 

Such a temporal correlation between fatal events is 
then used for failure prediction in the testing set. That 
is, if a network or I/O stream failure is reported, it is 
predicted that another failure is possible within a time 



Proc. of International Conference on Parallel Processing (ICPP’07) 
 

period of 5 minutes to 1 hour. The reason for choosing 
this duration is that a time window smaller than 5 
minutes becomes too small for taking preventive action 
based on the prediction, whereas a time window larger 
than 1 hour will induce an increased monitoring load 
on the system if such a scheme is implemented in an 
online system as it will require maintaining the history 
of all the events for the duration of 1 hour after a 
failure has been reported. Also, the processing/analysis 
cost of these events for failure prediction may not be 
trivial. The values of precision and recall for both the 
logs are shown in Table 5.  
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Figure 2.CDF of Failure Probability 
 

Log Name Precision Recall 
ANL 0.5157 0.4872 
SDSC 0.2837 0.3117 
Table 5. Prediction Results by Using Statistical 

Correlation between Fatal Events 
 
Discussion. A drawback with this prediction 

strategy is that precision is low as the number of 
failures which do not have subsequent failures 
occurring in the next time window is substantial. 
Another drawback is that apart from I/O stream and 
network failures, none of other categories of failures 
has such a temporal correlation. As shown in Table 4, 
other types of failures constitute 42% of the failures in 
both the logs, hence a substantial number of failures 
cannot be predicted by using this method. Further, as 
can be observed in Table 5, the precision and recall 
values may vary significantly for different Blue 
Gene/L systems.  

 
3.2.2. Rule-based Method  
 
     Next, we examine causal correlations between non-
fatal and fatal events and then use the correlations for 
failure prediction. A widely used technique for 
extracting such a causal correlation is to build 
association rules.  

Association rules were first introduced by Agrawal 
et al. to analyze customer habits in retail databases [1]. 
Association rule is an implication of the form X→Y, 
where the rule body X and head Y are subsets of the set 
I of items (I = {I1, I2,....,In}) within a set of itemsets D 
and X ∩ Y = Φ. A rule X→Y states that the transactions 

T that contain the items in X are likely to contain also 
the items in Y. Association rules are characterized by 
two measures: the support, which measures the 
percentage of transactions in D that contain both items 
X and Y; the confidence, which measures the 
percentage of itemsets in D containing the items X that 
also contain the items Y. The problem of mining 
association rules from a set of itemsets D consists of 
generating all the association rules from a set of items 
that have support and confidence greater than user-
defined thresholds.  

Lower value of support and confidence will 
generate larger amount of rules, thereby requiring 
longer time and more memory space to build the rules. 
Higher value of support and confidence will reduce the 
number of frequent itemsets and thereby reduce the 
number of generated rules, and consequently reduce 
the time and memory required for rule generation. 
However, the lesser number of rules, in turn, reduces 
the opportunities of capturing causal relationships 
among items, thereby reducing the rate of discovering 
fault patterns. We have set the minimal value for 
support as of 0.04 and confidence of 0.2 in our 
experiments. The low values for the parameters ensure 
that even if a failure event is reported very infrequently 
but it leads to a rule which is very strong, then it gets 
generated. This avoids the problem of infrequent items 
which may happen if higher values of support are 
used. Parameter values lower than these lead to 
exhaustion of compute resources because of generation 
of too many rules. 

Our rule based method works as follows:  
Step 1:  On the learning set, for each fatal event 

identify the set of non-fatal events frequently 
preceding it within a fixed time window (i.e. rule 
generation window). The set, including the fatal event 
and their precursor nonfatal events, is called an event-
set. 

Step 2: Apply the standard association rule 
algorithm to build rule models for event-sets that are 
above the minimum user-defined support [1, 15]. 

Step 3: Combine rules as we focus on predicting 
whether there is an imminent failure.  For example, if 
{e1,e2,…,ek}→f1 and {e1,e2,…,ek}→f2 are generated by 
Step 2, we combine them as {e1,e2,…,ek}→ {f1,f2}. 

Step 4:  Sort the generated rules in descending 
order of their confidence values.  

Step 5: Evaluate rules generated with different rule 
generation windows, and select the window size that 
can best capture a variety of fault patterns between 
non-fatal and fatal events.  

Step 6:  On the testing set, use the rules generated 
to produce a warning if an association rule is observed 
within a fixed time window (i.e. prediction window) 
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before the occurrence of the failure. If multiple rules 
are observed, select the rule with the highest 
confidence. 

To determine the optimum size of the rule 
generation window, we conducted experiments with 
window size ranging from 5 minutes to 1 hour. From 
the observed values of precision and recall for each of 
the rule generation window, we chose the window size 
which gives the best precision with highest recall. 
Thus, the rule generation window is 15 minutes for 
ANL log and 25 minutes for SDSC log. These rule 
generation windows were used for subsequent failure 
prediction in the testing set as described in Step 6. 

 
Figure 3. Partial List of Generated Association Rules with 

Their Confidence  Values 
 

Results.  Figure 3 shows a partial list of generated 
rules along with their confidence values. Figure 4 
presents the results of precision and recall for ANL 
and SDSC logs. As we can see, the precision value is 
in the range of 0.7 – 0.9, while recall is not as 
satisfying (ranging between 0.22 and 0.55). The 
figures also show that as the prediction window 
increases, recall improves without a substantial loss in 
precision. 
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Figure 4. Prediction Results (left ANL, right SDSC) 

 
As observed in Figure 4, the recall value is always 

smaller than 0.55 even when a larger prediction 
window is used. By further analysis, we find that a 
substantial number of failures (i.e. 31%-66% of 
failures from the ANL log and 47%-75% of failures 
from the SDSC log) do not have any precursor non-
fatal events.  

Discussion. In short, the rule-based predictor can 
effectively capture causal relationships among RAS 
events (e.g. high precision values); however, it is 
limited by the proportion of fatal events without any 
precursor warnings (e.g. low recall values). 
 

3.3. Phase 3 – Meta-Learning Prediction 
       
     As shown in Section 3.2, it is unlikely to produce 
an effective failure prediction by using either of base 
predictors alone. The statistical based method is 
effective in leveraging the temporal correlation among 
fatal events, but suffers from low coverage of failures 
and cannot capture causal relationships between non-
fatal events and fatal events, thereby ending up with 
low prediction accuracy.  The rule based prediction 
method is good at discovering causal relationships 
between non-fatal and fatal events, but its effectiveness 
is limited by the portion of fatal events without any 
precursor events. To address the problem, a meta-
learning mechanism is explored in our framework to 
boost failure prediction.  

Meta-learning or ensemble-learning can be loosely 
defined as learning from learned knowledge [7].  It is a 
technique that deals with the problem of computing a 
“global” predictor from the separately learned “base 
predictors” to boost overall predictive effectiveness 
[4].  In particular, it learns to identify preferable 
combinations of based classifiers as well as their 
quantitative performance effects from previous results. 
A widely used approach is called stacked 
generalizations, in which three metrics, namely 
conflict, coverage, and diversity, are developed to 
measure its accuracy [4]. Another important approach 
is called reinforcement learning which attempts to take 
the right bias according to the type of input-output 
distributions [21].  

Our meta-learner uses the coverage based stacked 
generalization which adaptively integrates the 
statistical based method and the rule based method. 
More specifically, it works as follows: 
• On the learning set, (1) obtain the statistical 

characteristics of failures with corresponding 
confidence values as described in §3.2.1 (Step 1); 
(2) generate association rules between nonfatal 
and fatal events with corresponding confidence 
values as presented in §3.2.2 (Step 1- 5); 

• On the testing set, observe the events within a 
fixed time window before the occurrence of a 
failure: (1) if there are nonfatal events, apply the 
rule based method for the discovery of fault 
patterns and produce a warning in case of 
matching rules; (2) if no nonfatal event is 
observed, examine the occurrence of fatal events 
and apply the statistical based method for failure 
prediction; (3) if both fatal and non-fatal events 
are presented, use the base method that produces a 
prediction with higher confidence. 
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Results. The prediction results obtained by using 
the proposed meta-learner are presented in Figure 5.  
As we can see, with both RAS logs, the prediction 
accuracy is significantly improved: (1) with the ANL 
log, the precision decreases from 0.88 to 0.65, while 
the recall increases from 0.64 to 0.78 as the prediction 
window increases from 5 minutes to 1 hour; (2) with 
the SDSC log, the precision decreases from 0.99 to 
0.89, whereas the recall is always around 0.65 as the 
prediction window increases from 5 minutes to 1 hour. 
Further, the precision decrease is more pronounced for 
results in ANL log as compared to SDSC log. This is 
so because the number of high confidence rules 
generated in ANL is less when compared to the rules 
learnt in SDSC resulting in higher false positive values 
which affect the precision of prediction.  
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Figure 5. Meta-learning Results (left ANL, right SDSC) 

 
As discussed in the previous sub-sections, recall 

was ranging from 0.22 to 0.55 for both the RAS logs 
by using either of base prediction methods. We also 
observed a high precision for rule based method but 
low for the statistical method (as given in Table 5). 
Compared to either of these predictors, the combined 
meta-learner has recall which is consistently more than 
0.65 for all prediction windows along with a 
consistently high value for precision. Thus, the meta-
learner based predictor can significantly boost the 
prediction accuracy.  

Discussion.  The main reason for such a significant 
improvement is that in a large cluster such as Blue 
Gene/L, the sources of failures are many and complex, 
thus it is improbable for a base prediction method to 
capture all of them alone. Instead, a meta-learning 
based approach can combine the strengths of multiple 
base predictors and discover various failures to give 
better failure prediction results. 

The meta-learning strategy is simple and time 
efficient. Its overall cost is about the same as the rule-
based method: the rule generation process varies from 
35 seconds for a 5-minute prediction window to 167 
seconds for a 1-hour prediction window; and the rule 
matching process is trivial. Therefore, it is practical to 
deploy the meta-learner as an online prediction engine. 

 

4. Related Work 
 

Generally speaking, fault prediction can be 
approached from two different angles: model-based or 
data-driven. A model-based approach derives a 
probabilistic or analytical model of the system [12]. A 
warning is triggered when a deviation from the model 
is detected [16]. Examples include an adaptive 
statistical data fitting method called MSET developed 
by Gross et al. [24], a Semi-Markov reward model 
[30], a neutral-network based classification for 
forecasting hardware failures [29], a naive Bayesian 
based algorithm for predicting disk drive failures [14], 
etc. Most of them either focus on specific types of 
failures or target small scale systems, thus not 
sufficient for large clusters.  

Data-driven approaches, such as using data mining 
in combination with intelligent systems, focus on 
learning and classifying occurring faults from 
historical data without assuming a priori model ahead 
of time. There are several recent research efforts on 
failure prediction in large clusters. Vilalta and Ma 
apply frequent itemset mining for failure prediction in 
a networked system comprising 750 hosts [19]. Sahoo 
et al. present several methods, including a rule-based 
data mining method, to predict a set of target failure 
events in a 350-node IBM cluster [28].  Perhaps, the 
work by Liang et al. is the most closely related work to 
ours [22]. The paper focuses on utilizing statistical 
characteristics among RAS events (e.g. spatial or 
temporal correlation) for prediction in a Blue Gene/L 
system. Different from these studies, our work 
emphasizes on exploiting meta-learning to boost 
failure prediction by combining statistical based 
method and rule based method. In a recent work [6], 
Oliner et al. has also pointed out the importance of 
using ensemble learning for failure prediction in large-
scale clusters.   

In [23], the authors give a detailed filtering process 
for a Blue Gene/L log. Our proposed framework 
utilizes a similar filtering process for log 
preprocessing. The major difference is that we 
categorize RAS events at a much finer granularity, 
which is useful in capturing more detailed fault 
patterns. 

 
5. Summary 
 

In this paper, we have presented a three-phase 
framework for failure prediction in Blue Gene/L, 
namely event preprocessing, base prediction and 
meta-learning prediction. In particular, we have 
proposed the use of meta-learning for improving 
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failure prediction in large scale clusters such as Blue 
Gene/L. The proposed framework adaptively integrates 
and combines two widely used base prediction 
methods (i.e. statistical based method and rule-based 
method) for discovering various fault modes (e.g. 
temporal correlations among failures and causal 
correlations among non-fatal and fatal events). Our 
preliminary results are promising. As compared to 
using a base predictor alone, the proposed meta-
learning prediction can significantly improve failure 
accuracy by up to three times.  Our primary goal is to 
open up further research on designing effective failure 
analysis and prediction systems for large-scale clusters, 
in particular those used in high performance 
computing. Further, the proposed meta-learning 
mechanism should be further examined for advancing 
failure prediction in large clusters.   

Although in this paper we focus on Blue Gene/L, 
we believe the proposed three-phase framework can be 
extended for general failure analysis and prediction in 
other large-scale clusters. For large-scale clusters 
which do not have a CMCS type of facility, the key 
issue is how to develop a monitoring tool which is 
capable of gathering fault-related information from 
low-level devices and archive the information in a 
centralized repository. This data can then be used by 
the three-phase framework for failure analysis and 
prediction.  
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