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Abstract 
 

Despite great efforts on the design of ultra-reliable 
components, the increase of system size and complexity 
has outpaced the improvement of component 
reliability. As a result, fault management becomes 
crucial in high performance computing. The advance 
of fault management relies on effective failure 
prediction. Despite years of research on failure 
prediction, it remains an open problem, especially in 
large-scale systems. In this paper, we address the 
problem by presenting a dynamic meta-learning 
prediction engine. It extends our previous work by 
exploring dynamic training, testing and prediction. 
Here, the “dynamic” part is from two perspectives: 
one is to continuously increase the training set during 
the system operation; and the other is to dynamically 
modify the rules of failure patterns by tracing 
prediction accuracy at runtime.  Our case study 
indicates that the proposed predictor is promising by 
being capable of capturing more than 70% of failures, 
with the false alarm rate less than 10%. 
 
1. Introduction 
 

In the next few years production systems are 
expected to contain tens to hundreds of thousands of 
computing nodes and thousands of I/O nodes [35]. 
Such a scale, combined with the ever-growing system 
complexity, is introducing a key challenge on fault 
management in high performance computing (HPC). 
Despite great efforts on the design of ultra-reliable 
components, the increase of system size and 

complexity has outpaced the improvement of 
component reliability. Recent studies have pointed out 
that the mean-time-between-failure (MTBF) of teraflop 
and soon-to-be-deployed petaflop machines are only 
on the order of 10 - 100 hours [19,22].  

To address the above reliability problem, 
considerable research has been done on improving 
fault resilience of systems and their applications 
through various technologies. Representative works 
include failure-aware resource management and 
scheduling [20], checkpointing [2,4,7,24,25], and run-
time resilience support [3,16,31].  Nevertheless, the 
advance of these fault tolerant technologies is hindered 
by the lack of fault prediction support in HPC.  For 
instance, proactive fault tolerant methods require 
failure forecasting to enable cost-effective failure 
prevention. For reactive fault tolerant methods such as 
checkpointing, an efficient failure prediction could 
substantially reduce their operational cost by telling 
when and where to perform checkpoints, rather than 
blindly invoking actions periodically with an unwisely 
chosen frequency [18].  

Previous work on failure prediction can be 
classified into two categories: model-based and data-
driven.  A model-based method derives an analytical or 
probabilistic model of the system and then triggers a 
warning when a deviation from the model is detected 
[9,12,13,14,24,27,28]. Considering the size and 
complexity of HPC systems, the model-based methods 
are too complicated to be practical for failure 
prediction in these systems. Data-driven methods, such 
as those using data mining techniques, attempt to learn 
and classify occurring failure patterns from historical 



Proceedings of the International Conference on Parallel Processing 2008 
 

2 
 

data without building an a priori model ahead of time 
[10,17,23].   

Existing prediction studies mainly focus on static 
analysis by applying one specific method.  Here, 
“static” means that the method generates rules in a 
static manner, such as using a fixed training set. 
Although they are effective in forecasting some 
failures, they have three inherent drawbacks. First, the 
sources of failures are numerous and complex in a 
large-scale system, thus it is improper to expect a 
single method to detect and capture all of them alone. 
Second, in order to obtain sufficient failure patterns, 
most of existing methods require a long training phase 
(e.g. a year), thereby making failure prediction 
unavailable for a long period of time. Considering that 
most HPC systems at supercomputing centers only 
have a couple of years in production, this requirement 
must be removed. Lastly, existing studies mainly focus 
on static analysis in which the training set remains 
unchanged. Since the upgrade of hardware and 
software is common in a typical HPC system, the 
failure patterns obtained from static analysis may 
become outdated very soon, thereby resulting in low 
prediction accuracy.  

To address the first problem, in our previous work 
we have proposed the use of meta-learning to boost 
prediction accuracy [10]. By integrating multiple data 
mining techniques, meta-learning aims at discovering 
various failure patterns and thus improving prediction 
accuracy.  While this work is promising, it is also 
based on static analysis.   

In this paper, we address the other two issues by 
extending our previous work to dynamic meta-learning. 
In particular, we present a dynamic meta-learning 
prediction engine for large-scale systems. It does not 
require a long training phase by dynamically 
increasing the training set during system operation. As 
we will show in Section 3-4, it can start to provide an 
acceptable failure prediction service after only two 
weeks of training. As the time goes by, it provides 
better failure prediction by dynamically adjusting its 
rules of failure patterns according to accuracy tracing 
and dynamic re-training.  

We demonstrate that the proposed failure predictor 
can effectively forecast failures by evaluating it with a 
130-week RAS log (about two and half years) from the 
Blue Gene/L system at SDSC. Our results show that 
the proposed predictor is capable of capturing more 
than 70% of failures, with the false alarm rate less than 
10%. Moreover, the proposed prediction engine can 
adapt to the changing system environment by 
dynamically adjusting its rules of failure patterns, even 
after a major system reconfiguration.  

The rest of the paper is organized as follows.  
Section 2 discusses the related work on failure 

prediction. Section 3 presents our dynamic meta-
learning prediction engine.  The case study on a RAS 
log is presented in Section 4. Finally, Section 5 
summarizes the paper. 

 
2. Related Work 
 

Recognizing the importance of fault management, 
the community has paid much attention to failure 
prediction. Exiting predictive approaches can be 
broadly classified as model-based methods or data-
driven methods. Model-based approach derives a 
probabilistic or analytical model of the system and 
triggers the warning when a deviation from the model 
is detected [28]. For example, Gross et al. have 
presented an adaptive statistical data fitting method 
called MSET to forecast the system dependability [29]. 
In [12], a naive Bayesian based algorithm is used to 
predict disk drive failures. In [26], a specific analytical 
model is developed for quickly detecting anomalies in 
I/O systems.  While model-based methods are effective 
for forecasting some failures, it is hard, if not 
impossible, to construct a precise model for large-scale 
HPC systems composed of tens of thousands of 
components.   

A data-driven method, such as using data mining 
techniques, attempts to learn failure patterns from 
historical data for failure prediction, without 
constructing an accurate model ahead of time. For 
example, the group at the RAD laboratory has applied 
statistical learning techniques for failure diagnosis in 
Internet services [33]. Sahoo et al. apply association 
rules to predict failure events in a 350-node IBM 
cluster [23].  In [17], Liang et al. examine several 
statistical based prediction techniques for failure 
forecasting in a Blue Gene/L system. In our own 
previous works [10, 15], we have investigated a meta-
learning based method by adaptively combining the 
merits of various data mining techniques. The above 
studies mainly utilize statically learned rules for failure 
analysis and prediction. 

While this paper is built upon many previous studies, 
it distinguishes from the above studies in that it 
emphasizes dynamic training, testing and prediction. 
By dynamically discovering failure patterns and 
tracing prediction accuracy during the system 
operation, the proposed predictor aims at finding an 
optimal set of fault patterns, even when the patterns are 
changing over time due to hardware or software 
reconfigurations. Another benefit of using dynamic 
training and prediction is that it does not require a long 
training phase to start with. By gradually increasing 
training data, the proposed predictor is able to build up 
its knowledge base as time goes by.  To the best of our 
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knowledge, we are not aware of any such service for 
failure prediction in HPC that can dynamically learn 
failure patterns and further adapt to the changing 
system state.  

 
3. Dynamic Meta-Learning Prediction  
 

Figure 1 presents a high level diagram of the 
proposed dynamic meta-learning prediction engine. It 
consists of two processing phases: one for data 
preprocessing and the other for failure prediction. 
Given that raw logs generally contain many repeated or 
useless information, the data preprocessor takes the 
raw logs from the underlying system as input and 
produces clean data for online prediction [10]. Here, 
the categorizer provides a standard categorization of 
RAS events, and the filter removes redundant data by 
conducting both a temporal compression at a single 
location and a spatial compression across multiple 
locations. Upon completion, the data preprocessor 
intends to provide a list of unique events for failure 
prediction.  

 
Figure 1.  Dynamic Meta-learning Prediction Engine 

 
The online predictor consists of three major 

components: the meta-learner, the predictor, and the 
reviser. It first triggers the meta-learner on the clean 
data to discover various fault patterns by applying 
multiple predictive methods. The generated rules, 
including both statistical rules and association rules, 
form the base for online prediction. These rules are 
subjected to modifications done by the reviser at 
runtime.  The reviser monitors prediction accuracy by 
comparing the predicted results and the actual failures, 

and then constructs an effective rule set for failure 
prediction. Note that the effective rule set is 
dynamically adjusted to reflect the current state of the 
system and the prediction accuracy. The predictor 
continuously examines the runtime data collected by 
system monitor tools.  In case that it discovers a 
matching pattern in the effective rule set, it will trigger 
a warning.  

 
Figure 2. Dynamic training, testing and prediction. 
The grey and black boxes together represent the 
training set, the black box indicates the testing set, and 
the white box denotes the prediction set. According to 
the results on the testing set, the reviser dynamically 
modifies the rules generated by the meta-learner. 

 
In the proposed dynamic meta-learning prediction 

engine, the “dynamic” feature comes from two 
perspectives: one is to continuously increase the 
training set during the system operation; and the other 
is to dynamically modify the rules of failure patterns 
by tracing prediction accuracy at runtime.  Figure 2 
gives an illustrative example on dynamic training, 
testing and prediction.  Specifically, assume that 
dynamic retraining is triggered every W weeks 
(denoted as dynamic window size) and it is the start of 
the [( 1) ]thk W+ ⋅  week: 

1. The meta-learner first generates rules using the 
training set composed of date from the 
previous  k W⋅ weeks (i.e. the training set); 

2. The reviser constructs an effective rule set by 
verifying the rules on the [ ]thk W⋅ week (i.e. the 
testing set). This includes adding new rules and 
removing those rules resulting in high false 
alarm. 

3. Once the effective rule set is obtained, the 
predictor uses it for failure prediction on the 
[( 1) ]thk W+ ⋅ week (i.e.  the prediction set). 
 

Meta-Learner. We have presented a meta-learning 
method to improve failure prediction in large-scale 
systems, as shown in Figure 3 [10]. Meta-learning, 
also known as ensemble-learning, can be loosely 
defined as learning from learned knowledge [21].  It is 
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a technique that deals with the problem of computing a 
“global” predictor from the separately learned “base 
predictors” to boost overall predictive effectiveness.  In 
particular, it learns to identify preferable combinations 
of based classifiers as well as their quantitative 
performance effects from previous results. 

 

 
Figure 3. Meta-learner 

 
In our case study, our meta-learner integrates two 

predictive techniques, i.e. the statistical based method 
and the association rules, with the objective to 
improve the coverage and accuracy of failure 
prediction. The statistical based method generates the 
statistical characteristics of fatal events, e.g. how often 
and with what probability will the occurrence of one 
failure influence subsequent failures.  It is in the form 
of { ,...., },k i jf f f conf→ , where f  is a fatal event 
and conf is the corresponding confidence value. 
Association rules examine the causal correlations 
between non-fatal and fatal events. For example, an 
association rule is in the form of 

1 2{ , ,..., } ,ke e e f conf→ , where ie is a nonfatal event, 

f is a fatal event and conf is the corresponding 
confidence value.  

 
Reviser. The reviser is responsible for modifying 

the rules generated by the meta-learner on the training 
set to construct an effective rule set. The principle is 
based on a key observation of failure characteristics in 
large-scale systems.  In [5], Song et al. show that 
failures have temporal locality, meaning that a failure 
may re-appear multiple times before its root problem is 
solved. Hence, the data set from the latest period is 
crucial for representing the failure patterns in the next 
period. The reviser adjusts the rule set based on the 
testing set (the data collected immediately before the 
prediction set), thereby making it possible to better 
capture failure patterns in the prediction set. 

The proposed reviser applies the ROC (Receiver 
Operating Characteristic) analysis, and the detailed 
algorithm is illustrated in Figure 4. ROC analysis aims 
at selecting possibly optimal models and discarding 
suboptimal ones independently from the class 
distribution [11].  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. The Pseudo-code for the Reviser 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. The Pseudo-code for the Predictor 

 
 

On the testing set: 
 
For each rule r generated by the meta-learner { 

1) count its true positives TP, false positives FP, and 
false negatives FN on the testing set; 

2) calculate precision(r) and recall(r) as described in 
Section 4.2; 

3) calculate ROC distance: 
2 2( ) ( ) ( )ROCd r precision r recall r= +  

4) put the rule r into the effective rule set if its ROC 
value is larger than a predefined threshold 
MinROC.  For example, we only put those rules 
outside of the grey area into the effective rule set. 

} 

Based on the effective rule set, first create two lists: 
1 2

1 2

{ { , , ..., } : 1 }

{ { , , ..., } : 1 }
i i i ik f

m m m m n e

F L is t f e e e i N

E L is t e f f f m N

− = → ≤ ≤

− = → ≤ ≤
Where fi is a fatal event and ej is an event (nonfatal or fatal) 
 
During prediction, when an event e occurs: 

(1) Append e into the prediction event set 

1 2{ , ,...., , }nE e e e e=  where the events are sorted 
in an increasing order of their occurrence times,  
and remove ei when _ie e predict windowT T T− >  

(2) Obtain potential failures that may be triggered by 
e according to the E-List: },,,{ 21 kfffe K→  

(3) For each failure in the set of },,,{ 21 kfff K , go 
through its event list according to the F-List: 

},,,{ 21
i
ik

i
i

i
i

i eeef K→  

(4) If 1 2{ , ,..., }i i i
i i ike e e E⊆ , then produce a 

warning that the failure if may occur within 

_predict windowT  
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Predictor. The predictor actively monitors runtime 
events and triggers a warning when a rule is observed 
within a fixed time window _predict windowT  (i.e. 
prediction window). The specific prediction method is 
presented in Figure 5. 

The online prediction engine is implemented in 
Java. It is connected to Weka [32] for generating 
association rules, and is also connected to an Oracle 
database for storing and querying the knowledge base.    
 
4. Case Study 

 
In this section, we evaluate the proposed online 

predictor by testing it with a RAS log collected from 
the production Blue Gene/L system at SDSC.  We first 
describe the RAS log, followed by presenting the 
results. We conduct three sets of experiments. The first 
set is to examine prediction accuracy by using different 
dynamic window sizes; the second set is to study the 
benefit brought by using the reviser; and the last set is 
to analyze the number of rules changed by using 
dynamic training and testing. 

 
4.1. The Blue Gene/L RAS Log  
 

The Blue Gene system at SDSC (San Diego 
Supercomputing Center) consists of three racks with 
3,072 compute nodes (4,144 processors) and 384 I/O 
nodes. The configuration is chosen to support data-
intensive computing. Each node consists of two 
PowerPC processors that run at 700 MHz and share 
512 MB of memory, giving an aggregate peak speed of 
17.2 teraflops and a total memory of 1.5 TB [34]. We 
have acquired a 130-week RAS log (i.e. about two and 
half years) from this production system.  

In Blue Gene/L, the Cluster Monitoring and 
Control System (CMCS) service is implemented on the 
service nodes for the purpose of system monitoring and 
error checking. The service node, which is available in 
each midplane, acquires specific device information, 
such as RAS (Reliability, Availability and 
Serviceability) events, directly through the control 
network. Runtime information is collected from 
computer and I/O nodes by a polling agent running on 
each BLC, reported to the CMCS service, and finally 
stored in a centralized DB2 repository. This system 
event logging mechanism works in a granularity of less 
than 1 millisecond. More details of the system 
architecture can be found in published literature [6].  

The entries in the RAS log include hard errors, soft 
errors, machine checks, and software problems.  
Information about scheduled maintenance, reboot, and 
repair is not included. Each record of the logs has a 
number of attributes, including event type, event time, 

job ID, location, facility, entry data, and severity. Here, 
the SEVERITY attribute can be one of the following 
levels - INFO, WARNING, SEVERE, ERROR, 
FATAL, or FAILURE - which also denotes the 
increasing order of severity. Our primary focus in this 
study is to predict FATAL and FAILURE events 
(denoted as fatal events, while other events are denoted 
as non-fatal events).  

Table 1 summarizes the RAS log from the Blue 
Gene/L system at SDSC. The raw log has more than 
one million entries. By applying data preprocessing, 
i.e. temporal compression at a single location and 
spatial compression across multiple locations where 
the threshold for compression is set to 300 seconds, we 
have obtained a cleaned log, whose information is 
listed in Table 1.  

 
 SDSC 

Start date 12/6/2004 
End date 06/11/2007 

No. of records after data 
preprocessing 559,211 

Size of cleaned log 704 MB 

Table 1. The RAS log from the production Blue Gene/L 
System at SDSC 

4.2. Evaluation Metrics 
 

 Two evaluation metrics are used to measure 
prediction accuracy: 

• Precision: defined as the proportion of correct 
predictions to all the predictions made  

p

p p

T
precision

T F
=

+
 

• Recall: defined as the proportion of correct 
predictions to the number of failures  

p

p n

T
recall

T F
=

+
 

Here, Tp is number of correct predictions (i.e. true 
positives), and Fp is number of false alarms (i.e. false 
positives), and Fn is number of missed failures (i.e. 
false negatives). Obviously, a good prediction engine 
should achieve a high value (closer to 1.0) for both 
metrics. 

 
4.3. Results 
 

In our experiments, the support and confidence 
values used in the meta-learner are set to 0.01 and 0.1 
respectively.  The MinROC value used in the reviser is 
set to 0.7. The prediction window is set to 300 seconds.  
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Figure 6 presents our prediction results by using 
different dynamic window sizes (2 weeks, 4 weeks, 6 
weeks, 8 weeks, and 10 weeks). The x-axis shows the 
sequence number of the week, which is up to 130. 
Each plot has two curves, one for precision and the 
other for recall. We can see that both precision and 
recall are not stable during the first 10 weeks. In most 
cases, precision monotonically increases to 0.9, 
whereas the recall monotonically increases to 0.7.  The 
reason is that during the initial phase, the effective rule 
set may not well capture failure patterns due to the 
limited size of the training set. We shall point out that 
even when the training set is two weeks, the predictor 
is still capable of capturing more than 47% of failures.  

After the initial phase, we notice that both precision 
and recall become stable. In general, after the initial 
phase (i.e. the first ten weeks), no matter how frequent 
the online predictor re-train its rule set, the recall value 
is maintained around 0.7-0.8, whereas the precision 
value is between 0.9-1.0. It indicates that the online 
predictor is capable of capturing more than 70% of 
actual failures, with the false alarm rate less than 10%.  

Further, we notice that both precision and recall 
decrease more than 10% during the 64th week. 
According to our record, the system went through a 
major system reconfiguration around this time. As a 
consequence, failure patterns are changed, thereby 
resulting in lower prediction accuracy during this 
period of time. Nevertheless, our predictor is capable 
of capturing newly discovered failure patterns. As we 
can see, both precision and recall are changed back to 
0.9 and 0.7 on the next prediction set. 

Comparing these plots generated by using different 
adaptation windows, we have made a key observation.  
In the initial phase, a small window size is needed for 
training and re-training. This can help the reviser to 
rapidly build up the effective rule set for online 
prediction. Once entering a stable phase, we can start 
to use a large window size to reduce the re-training 
cost.  

In the second set of experiments, we investigate the 
benefit introduced by using the reviser. Specifically, 
we compare prediction accuracy produced by using 
and not using the reviser. Note that the main 
functionality of the reviser is to dynamically adjust the 
rules of failure patterns according to accuracy tracing. 
Figure 7 presents our results where the dynamic 
window size is set to four weeks.  

 
 

 

 

 

 

 
Figure 6.  Prediction accuracy using different dynamic 
window sizes (2 weeks, 4 weeks, 6 weeks, 8 weeks, and 
10 weeks)  
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(a) 

 

 
(b) 

Figure 7. Prediction results W/ and W/O the reviser. 
Figure 7(a) plots the prediction results for the entire 
log, whereas Figure 7(b) highlights the period between 
the 52nd week – the 76th week. We have observed 
similar results for other window sizes, so we omit 
them. 
 

In the third set of experiments, we analyze the 
number of rules changed by using dynamic training 
and testing, and the result is presented in Figure 8 
where the dynamic window size is set to four weeks. 
As expected, the effective rule set always changes and 
the change becomes less significant with time. At the 
beginning, there are 310 rules and 392 rules added into 
the effective rule set in the 4th week and the 8th week 
respectively. Starting from the 16th week, the number 
of rules in the effective set is stabilized. For instance, 
only 17 rules are added and 19 rules are removed from 
the effective rule set in the 128th week.  We notice a 
substantial change occurs during the 64th week, where 
76 rules are added and 85 rules are removed. During 
this period of time, a system reconfiguration occurs, 
thereby resulting in significant rule changes.  
 

 
 
Figure 8. Number of rules changed by using our 
dynamic meta-learning prediction engine where the 
dynamic window size is set to four weeks. Similar 
patterns are observed with other window sizes. 
 
5. Summary 
 

In this paper, we have presented a dynamic meta-
learning prediction engine for large-scale systems.  It 
does not require a long training phase by dynamically 
increasing the training set during system operation. For 
instance, it can start to provide an acceptable failure 
prediction service after only two weeks of training 
phase. Our case study on a 130-week RAS log from 
the production Blue Gene/L system at SDSC has 
shown that it can effectively forecast failures with a 
precision of 0.9-1.0 and a recall of 0.7-0.8 by 
dynamically modifying its rule set according to 
accuracy tracing and dynamic re-training.  

Our study has some limitations that remain as our 
future work. First, in the current design, the dynamic 
window size is fixed. Our on-going work includes 
adaptively changing this window size such that the 
system can automatically tune its size to reduce the 
training cost, without sacrificing the prediction 
accuracy.  Second, we plan to investigate different 
revising algorithms to further improve prediction 
accuracy.  Lastly, more case studies with a variety of 
HPC systems are needed. We are in the process of 
acquiring RAS logs from supercomputing centers, such 
as the Cray XT3 at ORNL, for the purpose of 
evaluating the proposed prediction engine.  
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