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a b s t r a c t

The estimate of a parallel job’s running time (walltime) is an important attribute used by resource
managers and job schedulers in various scenarios, such as backfilling and short-job-first scheduling. This
value is provided by the user, however, and has been repeatedly shown to be inaccurate. We studied
the workload characteristic based on a large amount of historical data (over 275,000 jobs in two and
a half years) from a production leadership-class computer. Based on that study, we proposed a set of
walltime adjustment schemes producing more accurate estimates. To ensure the utility of these schemes
on production systems, we analyzed their potential impact in scheduling and evaluated the schemes
with an event-driven simulator. Our experimental results show that our method can achieve not only
better overall estimation accuracy but also improvedoverall systemperformance. Specifically, the average
estimation accuracy of the tested workload can be improved by up to 35%, and the system performance
in terms of average waiting time and weighted average waiting time can be improved by up to 22% and
28%, respectively.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

In a supercomputing systems, the job runtime estimate, also
called requested walltime, is an important job attribute provided
by users at job submission. Although this value was originally used
by resource managers to kill a job at its expiration, the value is
also heavily used in job scheduling. Backfilling [15], for example,
needs to know the expected runtime of both running and wait-
ing jobs so that it can fill short jobs into backfilling windows, re-
ducing fragmentation without delaying high-priority jobs. Some
schedulers favor short jobs in order to achieve improved average
response time [23]; they need to know the runtime estimates of the
waiting jobs when sorting the queue. Moreover, job runtime esti-
mates are essential to other resource management strategies, such
as advance reservation [11], queuing time prediction [7,20], and
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walltime-aware job allocation reducing fragmentation on torus-
connected systems [24].

However, user estimates of job running time have been re-
peatedly demonstrated to be highly inaccurate [3,30,2]. Indeed, a
large number of jobs consume only a small portion of the walltime
requested. A number of studies have been done to investigate
whether such inaccuracy can impact job scheduling performance.
Surprisingly controversial results have been reported. On one
hand, some claimed inaccuracy is helpful. For example, Mu’alem
et al. [15] reported that the inaccurate runtime estimates have
the potential to be beneficial because of backfilling; such results
have led to the suggestion that estimates should be doubled [34]
or randomized [17] to make them even less accurate. On the other
hand, some others suggested accuracy is more favorable. Studies
have shown that using more accurate runtime estimates can im-
prove system performance far more significantly than previously
suggested [2,21,28].

In this paper, we present a set of walltime adjustment schemes
that can be used by large-scale production systems directly. First,
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we studied workload characteristics based on a large amount of
historical data (275,000 jobs in 30 months) from a leadership-
class computer. Next, we proposed a set of walltime adjustment
schemes to produce more accurate estimates, and we discussed
how to configure each scheme for real computer systems. We
evaluated the performance of our walltime adjustment schemes
on production machines using simulations with real workloads.
Our experimental results show that our method can achieve not
only better overall estimation accuracy but also improved overall
system performance. Specifically, the average and median of
estimation accuracy of the tested workload can be improved by up
to 35% and 42%, respectively.Moreover, the systemperformance in
terms of average waiting time and weighted average waiting time
can be improved by up to 22% and 28%, respectively.

In this paper, several terms regarding job runtime are used
repeatedly. For example, we use job actual runtime (tact ) for job
execution time. We use user-requested walltime (treq), or simply
walltime, to represent the runtime estimates provided by users at
job submission; the resourcemanager kills jobswhen this time ex-
pires. We use tsched to represent the jobwalltime used by scheduler
for prioritizing and backfilling jobs. Usually, tsched equals treq; but in
this work, tsched can be other adjusted values. In this context, the
term ‘‘walltime adjustment’’ refers to the effort of a system to ad-
just the user’s estimates to create possibly more accurate walltime
estimates. The term ‘‘walltime estimate’’ refers to the runtime es-
timate either provided by users or adjusted by the system.

The remainder of this paper is organized as follows. Section 2
discusses some related work. Section 3 presents our study of
historical job traces. Section 4 presents our walltime adjustment
schemes and analytical evaluation. Section 5 presents our analysis
of the impact of imperfect prediction and an enhancement for
utilizing walltime adjustment. Section 6 presents a performance
evaluation of scheduling using enhanced walltime adjustment.
Section 7 summarizes our conclusions.

2. Related work

In this sectionwe review some related studies that have focused
on various aspects of runtime estimation, including accuracy and
impact on job scheduling, and we present schemes for improving
the accuracy.

2.1. Inaccuracy of user estimation

User-provided runtime estimates are known to be inaccurate.
For example, Cirne and Berman [3] showed that in four different
traces, 50%–60% of jobs used less than 20% of their requested time.
Ward et al. [30] reported that jobs on the Cray T3E used on average
only 29% of their requested time. Chiang et al. [2] studied a certain
workload and found that users grossly overestimated their job
runtime, with 35% of jobs using less than 10% of their requested
time. Similar patterns are seen in other workload analyses [15,21].
We studied a large amount of data from a production Blue Gene/P
system [1] and found that although the accuracy is better than
previously reported, the user estimates are still highly inaccurate:
half the jobs use less than 50% of their requested walltime.

2.2. Impact of user runtime estimates on job scheduling

Considerable work has been done on backfilling job schedul-
ing and the dependence on runtime estimation. Many results
suggest that usingmore accurate requested runtime has only min-
imal impact on system performance [15,20,34]. Additional results
in [15] show that doubling the user-requested runtime slightly im-
proves, on average, the slowdown and response time for IBM SP
workloads using FCFS–backfill. Other results are conflicting. Chiang
et al. [2] examined this question on the NCSA Origin 2000 (O2K)
and showed that more accurate requested runtime can improve
system performance much more significantly than suggested in
previous studies. Srinivasan et al. [21] studied the effect of vari-
ous backfilling schemes on different priority policies and observed
that inaccurate estimates can significantly deteriorate the over-
all performance. On the other hand, Tsafrir et al. [29,26] offered
two reasons that inaccuracy could better the scheduling: (1) an
invalid model (F-model) is used in modeling user estimates, and
(2) the improved performance is due to the ‘‘heel and toe’’ effect—
that is, the FCFS–backfilling is switched into a short-job-first type
of policy. Zhang et al. [33] showed that even though the average
job behavior is insensitive to the average degree of overestimation,
individual jobs can be affected; under common backfilling
schemes, users who provide more accurate runtimes are favored
over ones that do not.

Our work also reveals the relationship between the accuracy
and scheduling performance, but we do not use artificial or mod-
eled inaccuracy. Instead, we evaluate the performance change us-
ing theworkload after applying realwalltime adjustment schemes,
where the requested walltime is adjusted based on the real inputs.

2.3. Motivation for improving user accuracy

Besides the goal of improving the job scheduling performance
directly [22,28], a wide range of related work shares the common
motivation of improving the accuracy of runtime estimation. One
example is advance reservations for grid allocation and collocation,
shown to benefit considerably frombetter accuracy [11,20,14]. An-
other is scheduling moldable jobs that may run on any number of
nodes [7,20,4]. The scheduler’s goal is to minimize response time,
considering whether waiting for more nodes to become available
is preferable over running immediately. Thus, a reliable predic-
tion of how long it will take for additional nodes to become avail-
able is crucial. Recently, Yuan et al. [32] proposed PV-EASY
backfilling; this scheme, used to guarantee strict fairness and pro-
tect the interests of blocked top-priority jobs, also needs more
accurate walltime estimates. Similarly, our previous work [24]
proposed a walltime-aware job allocation strategy that tries to
pack jobs with similar size and length together to reduce fragmen-
tation on torus-connected system; its performance improves with
better walltime estimation accuracy.

Our primary motivation is to better the backfilling and queue
sorting. But, with more accurate estimates, our schemes benefit
all the other motivating problems that requiring more accurate
estimates.

2.4. Efforts to improve user estimations

Numerous efforts have been devoted to improving the accuracy
of user runtime estimates. Lee et al. [13] tried to improve user esti-
mation by removing the threat of job killing at walltime expiration
and providing tangible reward for accurate estimates. However,
experiments showed that their method leads to only insubstan-
tial improvement in the overall average accuracy. Considerable
research has focused on using system-generated prediction to bet-
ter the estimation accuracy. Suggested prediction schemes include
using the top of a 95% confidence interval of job runtime [8], a
statistical model based on the (usually) long uniform distribution
of runtime [7], using the mean plus 1.5 standard deviations, ge-
netic algorithms [20,19], instance-based learning [18], rough set
theory [12], and three-phase adaptive prediction [9,10]. Tsafrir
et al. [28] proposed a runtime predictor that averages the runtime
of the last two jobs by the same user. Wu et al. [31] proposed an
adaptive hybridmethod (AHModel) for Grid load predictionwithin
confidence windows.
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Table 1
Basic information about the job trace.

Attribute Value

Number of jobs 275,858
Time span January, 1, 2009–June 30, 2011
Number of computing nodes 40,960
Avg. job running time 5199 s
Avg. job requested walltime 9096 s
Number of projects 208
Number of users 503

Themain focus of this paper is how to use walltime adjustment
to obtain more accurate walltime estimates and limit the adverse
effect caused by inevitable undesirable estimates (e.g., underesti-
mates). Our study is based on a large amount of recent data from
leadership-class computer workloads. Our goal is to design effec-
tive strategies capable of being deployed on production supercom-
puter centers.

3. Studying the inaccuracy

In this section we introduce the job traces and the characteris-
tics of the original user runtime estimates.

3.1. Job traces

We collected 30 months of job traces from Argonne’s Intrepid,
from January 2009, when the 40-rack Blue Gene/P system went
into production, to June 2011, when this study started. The system
comprises 40,960 quad-core nodes, with 163,840 cores, associated
I/O nodes, storage servers, and an I/O network. This 0.5-petaflop
machine debuted as No. 3 in the TOP500 supercomputer list
released in June 2008 [25]. More background about the machine
can be found in our previous work [6,22,24]. Here we focus only
on the workload characteristics relevant to walltime estimates.

The job trace contains totally 275,858 completed jobs. For each
job, we obtained a series of attributes, such as job id, job size
(number of computing nodes), submission time, user-requested
walltime (runtime estimates), start time, end time, user name,
and project name. Table 1 shows some basic information of the
job trace. A portion of the job trace can be found in the Parallel
Workload Achieve in standard workload format [16].

3.2. Accuracy of user estimates

To measure the accuracy of user runtime estimates, we define
R as follows:

R =
tact
treq

. (1)

Here, R is the ratio of the job’s actual runtime to the user-requested
runtime; a higher R value correlates to higher runtime estimation
accuracy. Normally, users tend to overestimate a job’s runtime, in
order to avoid having the job killed before completion. Thus, R is
usually smaller than 1. Theoretically, R should also be no larger
than 1 because the job will be killed at the requested runtime
expiration. In fact, however, the job traces show jobs with an R
value slightly larger than 1. The reason is that those jobs complete
or are killed at the requested runtime expiration but take some
extra time to get the resource cleaned and returned. For simplicity,
we consider all the R value of all these jobs to be 1.

Fig. 1 shows a rough distribution of the R values of every job in
our trace. As shown in the figure, the R values of each job range
from 0 to 1. Only approximately 12% of all these jobs have R values
close to 1. Althoughmost of them are underestimated jobs that are
killed by the system at walltime expiration, they can be considered
Fig. 1. Distributions of R.

Fig. 2. Average R values by quarters.

as perfect estimates from the scheduler’s perspective because they
are indeed provided with accurate estimates matching their actual
runtime. Though killed, these jobs do not harm the system or other
jobs from the scheduler point of view (although the unsaved work
could impact the system and other jobs indirectly which is out of
the scope of this paper). Including the killed jobs, only 25% of the
jobs have an R value larger than 0.8, which can be considered as be-
ing highly accurate. On the contrary, about half the jobs consume
only half of their requested walltime. Even worse, 28% of the jobs
use less than 20% of their walltime. Although some of these jobs
may have encountered software bugs, the substantial discrepancy
between their requested walltime and actual runtime may inter-
fere with job scheduling policies that depend on requested wall-
time.

Fig. 2 shows the average R values of all the jobs grouped by
quarters. The average R values of all jobs are 0.50, with a standard
deviation of 0.33. The average by quarters ranges from 0.42 to 0.59.
In the next section, we introduce some adjustment schemes to
increase the estimate accuracy,which can be reflected by increased
average R values.

4. Walltime adjustment schemes

In this section, we explore the effect of a set of walltime adjust-
ment schemes. We begin by explaining our methodology and then
present our evaluation results.

4.1. Basic methodology

Instead of predicting the job’s actual runtime at submission,
we predict the accuracy of runtime estimation (i.e., R value). Thus,
according to the user-provided runtime estimate and the predicted
accuracy, we can get the adjusted walltime estimate used by
scheduling as follows:

tsched = treq × A, (2)

where A is an adjustment parameter. By multiplying A, the
estimated walltime is expected to be closer to the actual runtime.
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At job submission, we predict the A value based on the R values
of the relevant historical jobs. These values can obtained from the
historical job trace. Specially, when a job is submitted, we find a
group of eligible historical jobs relevant to the newly submitted
job; then, by calculating the R values of those historical jobs, we
set A to certain metric of the historical R. Thus, it is essential to
define how to choose the eligible historical jobs and how to get
the adjustment parameter based on the historical accuracy values,
which can be determined by a walltime adjustment scheme.

The walltime adjustment scheme is defined by three aspects:
similarity, recency, and aggressiveness. Similarity and recency to-
gether can determine which historical jobs are eligible historical
jobs. In otherwords, an eligible job should be ‘‘similar’’ to the newly
submitted job, sharing some common feature or attribute. We can
select similar jobs based on certain keys, such as user name, project
name, or a combination of them; for example, we can use the user
and project name as a double-key. Besides similarity, the eligible
historical job should be within a limited ‘‘recent’’ time, since in-
formation about older jobs may no longer be relevant. The recency
can be represented by a historical time window that rules out old
jobs outside the window. Once the eligible historical jobs are de-
termined, we can use a statistical metric to determine the A value.
Suchmetrics include the average,median,maximum, or percentile.
Different metrics represent different levels of ‘‘aggressiveness’’ to
adjust walltime estimates. For example, if we use the median as
the metric, the A value of a job is set to the median of the R values
of its eligible historical jobs.

In summary, a scheme is determined when we determine a
specific key type, historical time window, and statistical metric
that represents the level of aggressiveness. For example, if we
configure the key type to ‘‘user name’’, the time window to one-
month, and the metric to the 80th percentile, then the adjustment
scheme can be described as follows: When a job is submitted,
assuming its user name is usr , its adjustment parameter A equals
the 80th percentile of the historical jobs with user name usr , and
the job ended within the past month, then the adjusted walltime
can be calculated by Eq. (2).

After studying the characteristics of different keys, we identi-
fied four kinds of key types: only by user name, only by project
name, by user and project combination, and by the combination of
user, project, and walltime. We call the adjustment schemes with
the first two key types single-key schemes; that with the third key
type we call a double-key scheme; and that with the fourth key
type we call a triple-key scheme.

We use these attributes as keys because we found when we
group jobs by these keys, the standard deviation (std) of job R
values are smaller than the std among the total jobs. The average
stds of the grouped jobs R values in four cases are 0.308, 0.294,
0.285, and 0.253, which are all smaller than the total std, 0.335. The
smaller std within a job group indicates that the R values within
a group are less scattered and can be expected to provide more
consistent adjustment. We use the user-provided walltime as one
of the keys because this information can reflect the user knowledge
of the input data set. For example, for the same application, a larger
size of input data usually corresponds to a longerwalltime, and vice
versa. Since most of the jobs uses only a few number of requested
walltime values [27], using walltime as a key is feasible, similar to
user and project. Table 2 shows detailed information about the four
key types. Note that the number of job groups are counted after
ignoring some groups with job number less than 10. The reason is
that those small groups tend to have very small std, which stretches
the results.

For the historical time window, we have considered following
options: all the available jobs, 12months, 6 months, 3 months, and
1 month. The fewer months used, the more recency represented
but the less information available. The effect of using less historical
Table 2
Average standard deviation of job groups by different key(s).

Key type No. of job groups Avg std (R)

All jobs 1 0.335
Project 188 0.308
User 432 0.294
Double-key 614 0.285
Triple-key 2272 0.253

Fig. 3. Possible options for each of the three dimensions to determine a specific
walltime adjustment scheme.

data may be twofold: it may result in a lack of information, yet on
the other hand it discards some aged,misleading data. To avoid the
scheme’s being easily gamed by users, we do not consider a time
window less than 1 month.

For the aggressiveness level, we can use several options: max-
imum (100th percentile), 95th percentile, 90th percentile, p85
percentile, 80th percentile, and median (50th percentile). As the
percentile lowers, the aggressiveness level increases. A higher ag-
gressiveness levels may produce amore accurate estimate but also
may result in underestimates. Although we will not kill the job at
the expiration of adjustedwalltime, toomany underestimated jobs
in the systemmay violate the scheduling policy. We do not use the
average because it is close to the median in our historical work-
loads.

Fig. 3 summarizes the possible options for each of the three
dimensions.

4.2. Scheme evaluation

Having defined our methodology, we next evaluate the impact
of the different schemes.

4.2.1. Evaluation metric
The effectiveness of the schemes is determined by twometrics:

average accuracy of the workload with walltime adjustment and
the proportion of underestimated jobs.

We measure the average accuracy of the workload as follows.

Accuracy =

1 if Tact = Test
Tact/Test if Tact < Test
Test/Tact if Tact > Test .

(3)

Here Tact is the actual runtime of a job and Test is the runtime
estimate of a job, which is either the requested walltime provided
by user or the system-adjusted walltime estimate. The R value
model is part of this definition since all the estimates are larger
than the actual runtime. This accuracy metric also covers the case
that walltime can be underestimated, so Test is smaller than Tact .
Its value is between 0 and 1; and the larger the value is, the more
closer the estimate to the actual runtime. This metric was used by
Tsafrir et al. in a study of the dynamics of backfilling [28].
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Fig. 4. Average accuracy comparison among schemes using different key types.

4.2.2. Similarity and aggressiveness
We test the schemes with different key types and aggressive-

ness levels. Specifically, we fix the historical time window to infin-
ity first; all similar earlier jobs are considered eligible. Fig. 4 shows
the results of average accuracy. In the figure, all the accuracy values
are better than the base value, that is, the original average accuracy
of all jobs, which is 0.50. A general trend of accuracy is that the
lower the percentile used, the higher the accuracy achieved. And
with the same percentile, the more keys used, the higher the ac-
curacy achieved. In particular, the triple-key scheme is better than
the other three schemes. Specifically, the highest accuracy is seen
with using the triple-key scheme at the 70th percentile: the accu-
racy is 0.679, or 35% greater than the original average accuracy.We
noticed ‘‘Median’’ has slightly lower accuracy than 70th-percentile.
This may be because that ‘‘Median’’ is too aggressive that causes
more over adjustment which result in underestimates.

Because the system-adjusted estimates are used in production
scheduling, merely achieving better overall accuracy does not
suffice to evaluate a scheme. A good scheme should be able to
limit the number of underestimates as the by-product of walltime
adjustment. The term ‘‘underestimate’’ here means that the
system-adjusted walltime is shorter than the actual runtime.
The counterpart term, ‘‘overestimates’’, means that the system-
adjusted walltime falls between the actual runtime and the user-
provided estimation. By definition, overestimation is desirable
because the newwalltime estimate is closer to the actual runtime,
which corresponds to higher accuracy. Although ‘‘underestimate’’
sometimes means higher accuracy, it may have an undesirable
effect on the job scheduler.

In addition to these two, there is another kind of prediction
level: ‘‘no prediction’’. This means that, after walltime prediction,
the job’s walltime estimate remains the same as the original one
provided by user. This situation is caused mainly by the lack of
historical data in the same job category.

The impact of these different schemes is analyzed in Section 5.
Here we simply bear inmind that underprediction is not desirable,
and we provide statistics to evaluate the effectiveness of the
walltime prediction schemes.

Fig. 5 shows the proportions of jobswith various adjustment ex-
tents, which we divide into four levels: no adjustment (NA), over-
estimation (OE), underestimation (UE), and bad estimation (BE). NP
and OP are as described earlier. UE and BE both refer to underes-
timation, but UE means that the gap between the underestimated
walltime and the actual runtime is less than 30 min, whereas the
gap with BE is greater than 30 min. Thus, BE is highly undesirable,
the reason being that too much underestimates will cause prob-
lems such as violation of backfilling reservations. More details will
be discussed later.

As shown in the figure, for the triple-key scheme, when the
percentile gets smaller, the proportion of NA jobs declines, while
that of UE and BE jobs increases, and that of the OE jobs first in-
creases and then drops. The accuracy tends to increase when the
percentile gets smaller. Balancing the accuracy and the underesti-
mate rate, percentiles between 80 and 90 are desirable: accuracy is
reasonably high (larger than 0.6, 20% higher than that of the orig-
inal trace); desirable OP jobs are above 50%, which also is higher
than the original; and more important, the BE jobs’ rate is at a very
low level (1.2%–2.2%) and that of the UE is also comparably low
(9%–17%).

The double-key scheme has similar UE and BE proportions, but
the proportion of OP jobs is higher than that of the triple-key
scheme after the 90th percentile. Because of space limitation, we
donot show the results of the single-key schemehereafter, because
the trends are similar: the absolute accuracy improvement is lower
than that of the triple-key and double-key schemes.

4.2.3. Threshold of adjustment parameter
To further decrease the proportion of underestimated jobs,

we tested an enhancement that imposes a threshold on the
adjustment parameter A. If A obtained by an adjustment scheme
is less than a threshold, we set it to the threshold value. We reran
the walltime adjustment schemes on triple-key and double-key
schemes with a threshold of 0.5 and obtained the results shown
in Figs. 6 and 7.

As shown in Fig. 6(a) and (b), the proportion of underestimated
jobs drops at each percentile by 17%–35% compared with schemes
without the threshold. This threshold will not influence the
number of NA jobs, so the decreased job proportion is added to
the UP jobs, as is desirable. By using the threshold, the improved
accuracy is impacted slightly but can be ignored.

Fig. 7 looks similar to Fig. 6, but it represents the effect of
the threshold on the double-key scheme. Imposing a lower-bound
threshold on the adjustment parameter can reduce the proportion
of underestimated jobs with average accuracy slightly decreased.
Actually, the threshold not only contributes to the proportion of
the underestimated jobs but also limits the likelihood of a job be-
ing underestimated. For example,with a lower-bound of 0.5 for the
adjustment parameter, the underestimated job will achieve an ac-
curacy of at least 0.5, meaning its estimation is larger than half the
actual runtime. But without the lower-bound, a job after walltime
adjustment may have an estimate that is only a small fraction of
the runtime (e.g., 0.1), which is misleading to the scheduler.

4.2.4. Recency
We also studied the impact of the historical time window.

We ran the same set of previous tests but added the historical
time window as a constraint. That is, only those jobs within the
recent historical time window could be used for future adjust-
ment. Specifically, we tested timewindows for 1month, 2months,
3 months, 6 months, and 12 months.

Fig. 8 shows the accuracy variance caused by the using
different historical time windows. For the triple-key scheme, the
smaller time window generally results in slightly higher accuracy.
Although this trend is clearly seen only for percentiles larger than
the 90th, the accuracies of 1M (the smallest window) are larger
than using ALL jobs (the largest window), with the exception of
the 70th percentile, which has close accuracy values for different
time windows. For the double-key scheme, the trend that smaller
windows result in higher accuracy is seen consistently.

We also examined the job proportion of underestimated jobs
(both BE and UE). As shown in Fig. 9(a), the proportion of BE
jobs varies with different time windows at each percentile used.
Generally, the smaller the window, the fewer the number of BE
jobs (although some exceptions can be found in the middle).
The smallest window (1M) always has fewer BE jobs than the
largest window does. Such trends are especially clear for the 70th
percentile and median cases. The double-key scheme shows a
similar trend (Fig. 9(b)) when the percentile is smaller than the
85th. For other cases the smaller windowmay correspond to more
BE jobs, but the numbers are close.
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(a) Triple-key. (b) Double-key.

Fig. 5. Proportions of jobs with various adjustment extents and average accuracies. NA—No adjustment, OE—Overestimation, UE—Underestimation, BE—Bad estimation
(30 min or more under).
(a) Underestimation (UE). (b) Bad estimation (BE).

Fig. 6. Effects of threshold of adjustment parameter on triple-key schemes.
(a) Underestimation (UE). (b) Bad estimation (BE).

Fig. 7. Effects of threshold of adjustment parameter on double-key schemes.
(a) Triple-key. (b) Double-key.

Fig. 8. Impact on avg. accuracy by using different historical time windows.
Fig. 10 shows the proportion of UE jobs using different time
windows. Again, the smaller the window, the fewer the number of
BE jobs. In particular, the proportion of UE jobs using a one-month
window is significantly less than those using all jobs. Specifically,
the proportion decreased by 10%–15% when we used one-month’s
recent jobs instead of all historical jobs with a percentile smaller
than 90. For the double-key scheme, this decrease (up to 7%) is
also clearly seen with percentiles smaller than 90. For the other
percentiles tested, the smaller window’s UE job proportions are
very close to (if not less than) those of the larger windows’ UE job
proportions.

To compare the detailed distribution change of the job ac-
curacies before and after walltime adjustment, we plotted the
cumulative distribution of the job accuracy values for original
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(a) Triple-key. (b) Double-key.

Fig. 9. Impact on BE job proportions by using different historical time windows.
(a) Triple-key. (b) Double-key.

Fig. 10. Impact on UE job proportions by using different historical time windows.
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Fig. 11. Cumulative distribution of accuracy value: before and after walltime adjustment.
workload and several workloads after walltime adjustment
(Fig. 11). In each figure, four lines are depicted. One is for the orig-
inal workload, whose distribution is consistent with the propor-
tions shown in Fig. 1. The other three lines represent the accuracy
distribution for workloads after walltime adjustment. Maximum
means using the 100th percentile, representing the most conser-
vative scheme. Median means using the median as adjustment
metric, representing the most aggressive scheme. Medium means
using the 85th percentile scheme. Other percentile plots are close
to the 85th-percentile line. For convenience of analysis, we omit
those lines in the figure.

Fig. 11(a) shows the distribution comparison for the triple-
key scheme. Each y-axis value represent a percentile of the total
accuracy. For example, at the 60th percentile, the accuracy of each
workload is 0.64, 0.70, 0.83, and 0.86 (from left to right, the x values
on the lines when y = 0.6). Collectively, the lower the lines, the
better. Thus, the adjustedwalltimes have better accuracies than do
the original ones. The ‘‘Maximum’’ is closest to the ‘‘Original’’ line,
meaning it has the least improvement, consistent with the results
observed earlier. Earlier results also indicated that the average
accuracy using the median is better than the accuracies obtained
using the 85th percentile. But in fact the median-scheme is better
only for those jobs with low percentiles—that is, only when y is
smaller than 0.4 is the ‘‘Median’’ line lower than ‘‘85th-percentile’’
line. If we compare themedian accuracy instead of the average, the
scheme using the 85th percentile is the best, with the value 0.71,
slightly larger than median-scheme’s 0.68, and significantly larger
(42%) than the originals 0.5.

Fig. 11(b) shows that the double-key scheme has similar dis-
tributions except that the adjusted lines are closer to the original
lines, a result that confirms the earlier results that the overall ac-
curacy with a double-key scheme is lower than with a triple-key
scheme.

Of note in the figure is an abrupt increase from x = 0.48 to
x = 0.50. This is the effect of applying a threshold value of 0.5. It
is most clearly seen for the most aggressive adjustment schemes
shown in this figure, using the median metric.
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Table 3
Effects of using adjusted walltimes.

Job Overestimation (OE) Underestimation (UE & BE)

Waiting Backfill chance increased, no delay Chance increased, may delay
Running Shorter backfill window Shorter window and delay

4.2.5. Discussion
The selection of an adjustment scheme is determined by re-

source management goals. Nevertheless, based on our own expe-
rience, we present here four general guidelines that can be used in
selecting a particular scheme.

First, we prefer the scheme with the most increased overall
accuracy (which can be measured by average or median accuracy
among all jobs). Second, we prefer the scheme that yields fewer
underpredicted jobs, especially badly estimated (BE) jobs, which
may interfere with the scheduling. Third, to make the walltime
prediction process simple and efficient, we prefer to minimize the
amount of historical data. Fourth, to prevent users fromgaming the
system, we prefer to avoid using too few historical jobs.

For the first guideline, using a triple-key scheme and more ag-
gressive confidence level is desirable (Fig. 4). With the second
guideline, we can narrow down the scheme options to thosewith a
confidence level from the 80th to the 90th percentile (Fig. 5). Plac-
ing a threshold on the adjustment parameter can effectively reduce
the number of underestimated jobs (Figs. 6 and 7). In accordance
with the third guideline, we found (fortunately) that less historical
data not only does not degrade the prediction effectiveness but also
is helpful (Figs. 8–10); thus, we suggest using only one-month his-
torical jobs as the prediction base, both for simplicity and for better
accuracy. In accordance with the fourth guideline, we do not con-
sider using less data; indeed, we add a threshold that at least 10
similar jobs must exist to be eligible to adjust a job’s walltime es-
timate. We want to ensure that users not achieve more priority by
always submitting highly inaccurate (faked) jobs purposely.

5. Utilizing adjusted walltime

To deploy walltime adjustment schemes on production ma-
chines, we need to know the potential impact on the system. To
this end, we analyzed the impact of walltime adjustment on job
schedulers. Based on this analysis, we propose a selective walltime
adjustment scheme that minimizes potential adverse effect intro-
duced by walltime adjustment.

5.1. Impact of walltime adjustment

The walltime adjustment schemes affect the system differently
in various scenarios. These scenarios include overestimation or
underestimation, using adjusted walltimes for waiting jobs or
running jobs, and using adjusted walltime for job prioritizing or
backfilling.

A typical backfilling scenario is illustrated in the left part of
Fig. 12, where job 1 is running and job 2 is currently scheduled
(with top-priority in the queue) but it cannot get enough nodes
to start running. In this case, job 2 will get a reservation at the time
and location illustrated in the figure. The reservation determines
the ‘‘backfill window’’, where lower-priority waiting jobs can be
filled in this window to run ahead of time, since they are not going
to delay the start of job 2. Without walltime adjustment, only job
5 can be backfilled in this example.

For waiting jobs, overestimated jobs can have a greater chance
of being backfilled and will not harm other jobs. As shown in
the figure, job 3 cannot be backfilled with user estimation, but
it can with system-adjusted walltime. If a job is underestimated,
however, although it is also more likely to be backfilled, it may
delay the top-priority reserved job. For example, job 4 can be
backfilled with the underestimated walltime, but it will delay the
start of job 2 because job 4 will actually finish later than job 1.

For running jobs, overestimation and underestimation also
have different impacts. If we adjust the walltime for running jobs
(both OE and UE), the backfilling windows will be shortened (as
shown in the right part of Fig. 12). The difference is that overes-
timation does not result in other bad effects, but underestimation
will additionally cause delay for the job with a reservation at its
expected end time, because the running job will not actually end
at the adjusted walltime expiration.

Besides backfilling, job prioritizing is also impacted by system
prediction if the queuing policy depends on the job walltime
(e.g., short-job-first queuing policy). In this case, an overestimated
waiting jobwill earnmore priority than it can getwithoutwalltime
adjustment because the requested walltime is smaller. Since it
is closer to the runtime, this effect is desirable. If a waiting job
is underestimated, on the other hand, the job will get more
priority than it should, thus misleading the scheduler. In general,
more accurate adjustment is more helpful to sort the queue in
a real short-job-first manner. Table 3 summarizes the effects
(both positive and negative) of using adjusted walltimes in job
scheduling.

5.2. Selective walltime adjustment

Based on the analysis of walltime adjustment impacts, we pro-
pose a selective walltime adjustment scheme as an enhancement
to the regular walltime adjustment. The enhancement is based on
the fact that walltime adjustment used in different parts of the
scheduling procedure can cause different effects. In particular, un-
derpredictions can cause undesirable consequences on some occa-
sions. We cannot control the underestimation, but we can try to
avoid the underestimation impact by not using walltime adjust-
ment in certain parts of the scheduling.

To this end, wemodified the traditional job scheduler, allowing
it to usewalltime adjustment only for waiting jobs and to use user-
provided walltime estimates for running jobs. In this way, we can
achieve more accurate queuing order, create relaxed backfilling
windows, have more jobs be backfilled, and avoid reserving a
wrong location caused by the underestimation of running jobs.
Although the underestimation for waiting jobs in backfilling can
cause some delay of top-priority jobs, we still use it because
overestimation for waiting jobs has other benefits (increasing the
individual job’s chance of being backfilled).

6. Performance evaluation

An essential goal of improving the accuracy is to improve the
system performance. In this section we evaluate the performance
improvement by deployingwalltime adjustment in job scheduling.
We first introduce the experiment setup and configurations and
then present the experimental results.

6.1. Experiment setup

We implemented our schemes into a production resource
manager named Cobalt [5] and conducted event-driven simulation
with Qsim [22] extended with walltime adjustment schemes.
Two strategies were evaluated: (1) applying walltime adjustment
schemes to both waiting jobs and running jobs and (2) applying
walltime adjustment only for waiting jobs, using user-provided
estimates for running jobs.

We ran four sets of simulations. Each set was configured with
a combination of a queuing policy (either SJF-like or FCFS) and a
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Fig. 12. Impacts of overestimation and underestimation.
walltime adjustment strategy (either regular or selective). To rep-
resent the SJF-like queuing policy, we used the priority function in
Eq. (5), which is used on Intrepid, the production Blue Gene/P sys-
tem at Argonne. Note that backfilling is supported for both queu-
ing policies. With the regular scheme, the walltime adjustment
scheme is applied to all the jobs in the system; with the selective
scheme, walltime adjustment is applied only towaiting jobs, while
the original user estimates are used for running jobs.

For each set of simulations, we tested four cases: one is the
original scheme without walltime adjustment as baseline, and
the other three use different walltime adjustment schemes de-
termined by the three dimensions described earlier. Regarding
similarity and recency, we use a triple-key scheme and one-month
window, in order to get highest accuracy brought by these two
dimensions. Regarding the level of aggressiveness, we use the
95th percentile, 85th percentile, and 70th percentile for the three
schemes, which represent conservative, medium, and aggressive-
ness, respectively. Themore aggressive the scheme, the greater the
accuracy obtained, but with more underprediction produced.

We ran simulations using the real job trace from Intrepid on a
monthly basis. We split the job trace from recent 12 months (July
2010 through June 2011) into 12workloads. Theworkloads contain
7700 jobs on average (ranging from over 6000 to over 9000 jobs
per month). For different months, the jobs have different average
estimation accuracy, either before or after walltime adjustment. As
shown in Fig. 13, the original accuracy is around 0.5, and the three
walltime adjustment schemes increase the accuracy to above 0.6.
Using the 70th percentile, one can obtain the highest accuracy for
every month, but it also produces the most underestimation.

To measure the performance, we examined several metrics,
including two widely used metrics: average waiting time and
average slowdown. The waiting time of a job is the time between
the time it is submitted and started. The slowdown, defined by
that a job’s waiting time plus running time and then divided by
its running time, captures the fact that a longer job endures more
waiting time than a shorter job does. We also measured a new
metric, called weighted average waiting time, that is calculated by

WW =

n
i
(Wi ∗ Pi)

n
i
Pi

, (4)

where WW means the weighted average waiting time for the
whole workload containing n jobs, Wi means the waiting job of
a single job i, and Pi means job i’s priority score at the time it
is started. The priority score can be obtain based on the specific
queuing policy. For example, the score of FCFS can be represented
by the job’s waiting time. For Intrepid, the priority score is
calculated by

Pi = (tqueue/treq)3 × ni, (5)
Fig. 13. Average accuracy values of tested workloads.

where tqueue, treq, and ni denote the queue waiting time, user-
requested runtime, and the number of nodes of job i, respectively.

The weighted waiting time can reflect how much the higher-
priority jobs are favored by the scheduler. If two workloads have
same average waiting time but different weighted waiting time,
we can say that the one with lower weighted waiting time has
better performance because higher-priority jobs have endured less
waiting time.

6.2. Results

We present here our experimental results, beginning with the
SJF-like queuing policy and followed by FCFS.

6.2.1. SJF-like policy with walltime adjustment
First we present the results of using a SJF-like scheduling policy

(namelyWFP, described by Eq. (5)). Fig. 14 shows the results for the
regular strategy: applying walltime adjustment for both waiting
jobs and running jobs. The first three charts plot the performance
of the walltime adjustment schemes compared with original job
scheduling (without walltime adjustment). The baseline repre-
sents the original scheme, and the pxx line represents walltime
adjustment using the xx-percentile. In the plots, we assume the
baseline waiting time and average waiting time equal 100 (min-
utes) and the slowdown equals 10, and normalize other values
by these baselines. This is because what we are interested in is
the improvement that walltime adjustment can bring. As shown
in Fig. 14(a), the waiting times of the walltime adjustment cases
are mostly under that of the baseline, meaning that for most cases,
using walltime adjustment results in less average waiting times,
with only a few exceptions from p95 and p70 (on 1007, 1108, and
1103). While p95 outperforms the other two for most months, p85
performs more consistently well under the baseline. For the best
case, p85 saves 40% average waiting time (in 1009). The average
slowdown and weighted wait have similar plots (Fig. 14(b) and
(c)), which indicate that walltime adjustment can improve system
performance, with a few exceptions. Fig. 14(d) shows the average
improvement of each scheme on eachmetric. For thewaiting time,
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(a) Avg. wait. (b) Avg. slowdown.

(c) Weighted avg. wait. (d) Relative gains.

Fig. 14. Simulation results on monthly basis.
(a) Avg. wait. (b) Avg. slowdown.

(c) Avg. weighted wait. (d) Relative gains.

Fig. 15. Simulation results on monthly basis, using selective walltime adjustment schemes.
p95 and p85 can achieve around 15% improvement comparedwith
the baseline. For the slowdown and weighted wait schemes, p85
outperforms the other two, achieving 16% on slowdown and 19%
onweightedwait. P75 performs least effectively even though it has
the best accuracy; this result indicates that underpredictions have
a negative effect on scheduling. Overall, even with some inevitable
underestimation, walltime adjustment schemes can improve the
job scheduling performance.

Now we examine the effectiveness of the selective walltime
adjustment. As mentioned earlier, the selective scheme means
using system-adjusted walltimes for waiting jobs (either in job
prioritizing or backfilling) and using user-provided walltime
estimates for running jobs (in deciding backfilling windows). In
this way, we can get relaxed backfilling windows, increase the
possibility of jobs being backfilled, and avoid the impact brought by
underestimated running jobs. Fig. 15 shows the simulation results.
In general, these results are better than those in Fig. 14. Not only
are the lines generally lower than the baseline, but also the points
above the baseline also are much reduced. In other words, the
selective schemes improve performance more than the regular
schemes do. Moreover, p85 performs particularly well; for most
months, it can achieve over 20% improvement (under 80 for wait
and weighted wait, under 8 for slowdown). The average gains of
p85 reach 22%, 22%, and 28% for the three metrics, respectively.
The most improved metric is weighted average waiting, which
is desirable by the scheduler because the interests of high-
priority jobs are better fulfilled. With selective adjustment, p70
has performs better than with regular adjustment schemes while
p95 remains the same (or worse in terms of weighted waiting).
This fact indicates thatmore performance gains comesmainly from
avoiding underestimation for running jobs, because p70 has much
more underestimation while p95 has very little.
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(a) Avg. wait. (b) Avg. slowdown.

(c) Avg. weighted wait. (d) Relative gains.

Fig. 16. Simulation results on monthly basis, using selective walltime adjustment schemes.
(a) Avg. wait. (b) Avg. slowdown.

(c) Avg. weighted wait. (d) Relative gains.

Fig. 17. Simulation results on monthly basis, using selective walltime adjustment schemes.
6.2.2. FCFS with walltime adjustment
Now we examine the experimental results for using FCFS

queuing policy. Figs. 16 and 17 show the simulation results with
regular and selective walltime adjustment schemes, respectively.
We found that regular walltime adjustment did not help improve
system performance using the FCFS queuing policy. As shown
in Fig. 16(a), the plots representing walltime prediction schemes
oscillate around the baseline, though the extent is not large (mostly
within 10% of the base value). The average slowdown andweighted
wait have similar trends. Overall, the average relative gains are also
not consistent (Fig. 16(d)). Using the 95th percentile realizes the
highest gain, with only 2% increase in the average wait. Several
cases have less than 1% gain, and others have negative impact.
Among them, using the 70th percentile causes the biggest negative
impact: −8% on slowdown. Other negative impacts are within
−4%.
On the other hand, when we use FCFS with selective wall-
time adjustment, the results are surprisingly better, with the only
change of inhibiting the walltime prediction for running jobs. As
shown in Fig. 17, the lines representing the walltime adjustment
schemes are mostly under the baseline. They even have fewer out-
liers compared with the WFP cases. For example, for p85 and p70,
there is no performance degradation for a singlemonth. The overall
relative gains are not as much as seen by using WFP with selective
walltime adjustment (Fig. 15), but they are considerable. P85 and
p70 have more gains, achieving around 20% improvement on wait
and slowdown. For the weighted average wait, the improvement
is slightly over 15%.

7. Summary

In this paper, we have addressed an issue in job scheduling on
production supercomputers where users provide inaccurate job



W. Tang et al. / J. Parallel Distrib. Comput. 73 (2013) 926–938 937
runtime estimates that are heavily used in job scheduling and
resource management.

First, we studied a large amount of historical data from Intrepid,
the production Blue Gene/P system at Argonne National Labora-
tory, and found that the user runtime estimates are highly inac-
curate: 50% of jobs consumed less than 50% of their requested
walltime.

Then, we designed a set of walltime adjustment schemes de-
fined by a three-dimensional vector representing similarity, re-
cency, and aggressiveness.We tested the schemes and showed that
these schemes can improve the overall accuracy of runtime esti-
mates. In particular, using a triple-key scheme, the 85th percentile,
and one-month’s historical window can produce good adjusted ac-
curacy and a low proportion of underestimated jobs.

More generally, using more keys (triple key) and less aged data
(short time window) results in better accuracy. However, while
themore aggressive confidence window results in better accuracy,
it introduces more underestimated jobs. In terms of accuracy, the
average and median of estimation accuracy of the tested workload
can be improved by up to 35% and 42%, respectively. In terms of
underestimated jobs, schemes using the 85th or higher percentile
can limit the underestimated rate to under 10% and the bad
estimation rate to under 1.5%.

Further, we analyzed the effects of utilizing walltime adjust-
ment in job scheduling, especially the potentially adverse im-
pact brought by underestimation. Based on the analysis, we
proposed an enhancement to walltime adjustment, called the se-
lective walltime adjustment scheme, which allows the scheduler
to use system-adjusted walltimes only for waiting jobs while us-
ing user estimates for running jobs.

To evaluate both the regular and the selective walltime adjust-
ment schemes, we conducted simulation-based experiments un-
der SJF-like and FCFS queuing policies. The experimental results
show that under the SJF-like queuing policy, both regular and se-
lective walltime adjustment schemes can improve performance in
terms of average waiting time, slowdown, and average weighted
waiting time. Moreover, using selective walltime adjustment with
the 85th percentile, triple-key scheme, and one-month historical
window outperforms all other schemes, achieving 22%, 22%, and
28% improvements on the studied threemetrics, respectively.With
FCFS, on the other hand, regular walltime adjustment does not im-
prove the scheduling performance; however, using the selective
schemes helps, achieving 20%, 22%, and 15% improvements on the
three metrics.

Therefore, we conclude that to achieve performance improve-
ment by increased estimation accuracy, we need either to use a
queuing policy favoring short jobs or not to use adjusted walltime
estimates for running jobs.
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