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Abstract—As HPC systems scale toward exascale, it becomes
critical to manage the underlying resource more effectively. While
almost all existing resource management systems schedule jobs
in a queuing fashion and have drawbacks of making isolated
scheduling decisions that would compromise system performance
even with backfilling, plan-based schedulers have the potential
to generate better job schedules by producing an execution plan
of all waiting jobs but do not receive enough attention.

In this paper, we present a novel plan-based scheduling system
that utilizes simulated annealing as the optimization engine to
support effective resource management on HPC systems. As
demonstrated by extensive trace-based simulations with workload
traces collected from a wide range of production supercomputers,
in comparison with the queue-based scheduling system using
FCFS with EASY backfilling, our plan-based scheduling system
can reduce the job wait time by 40%, reduce the job response
time by 30%, while slightly improving system utilization at the
same time. Moreover, our plan-based system is able to run
online by solving the scheduling problem at each scheduling
iteration within one second, making it practical for production
HPC systems.

Index Terms—Plan-based scheduling, Simulated Annealing
algorithm, Optimization

I. INTRODUCTION

The ever increasing demand for computational resources,

which is a fundamental requirement in both science and

industry, is always driving the development of new genera-

tion of computing systems. We have seen in recent years a

growing deployment of such large-scale computing systems

consisting of massive number of tightly- or loosely-connected

nodes [1]. To operate such large-scale systems, a resource

management system is essential that handles large numbers

of computing nodes, provides load balancing, and even man-

ages heterogeneity for nodes of different architectures. One

key responsibility of the resource management system is to

provide efficient resource isolation and sharing across multiple

parallelized or distributed applications. A common scenario is

that the resource management system decides when and how

to dedicate computing nodes to specific applications, which is

often called “job scheduling” [2].

Most of the resource management systems available to-

day can be classified as queue-based systems, including

SLURM [3], PBS [4], Cobalt [5], Platform LSF [6], and IBM

Loadleveler [7]. Job schedulers are used by these systems

to operate multiple waiting queues, which have different

priorities, properties or constraints (e.g., high priority queue,

short job queue). Each incoming job request/submission is

assigned to one of these queues. When there is available

resource, the job scheduler makes the scheduling decision

by selecting jobs from these queues in a certain order and

allocating resource to these jobs until all available resource is

consumed up. The most simple and commonly used strategy

is FCFS (First Come, First Served), which allocates resource

to jobs in chronological order according to their submission

times in the system. Some modern resource management

systems also use priority queues to do more fine-grained

job categorization, reflecting the priority of a certain type of

jobs [2]. Nevertheless, these strategies always start to allocate

resource to jobs from the queue head. If the available resource

cannot satisfy the job in the queue head, the job scheduler

may use a strategy called “backfilling” to improve system

utilization by allowing out-of-order executions of jobs without

delaying the current job. First, the job scheduler reserves a

possible start time in future for the first job in the queue

given its resource requirement and the expected completion

times of all running jobs. Then suitable jobs are selected

from the rest of the queue to get allocated, whose expected

runtime is shorter than the length of the reservation. Two well-

known backfilling strategies are conservative and EASY. In
particular, conservative backfilling [8] attempts to schedule as

many jobs as possible following their ordering in the queue

while EASY backfilling [9] [10] [11] stops at the first such job

for simplicity. FCFS with EASY backfilling is a widely-used

policy adopted by production systems.

Although a queue-based approach is easy to understand

and implement, it inevitably has drawbacks resulting from its

decision process that implicitly or explicitly depends on the

job ordering defined by the queue. The scheduling decision

is isolated in that every time the job scheduler only selects

the first job in the queue, disregarding information that is not

captured by the ordering, e.g. current system states, possible

future scheduling choices, and complex job constraints such

as deadlines [12] or SLA (Service Level Agreement) [13].

The same concern extends to backfilling strategies in that to
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backfill the jobs following the queue ordering at a particu-

lar time point does not necessarily lead to the best overall

system utilization and application performance. Moreover,

queue-based approaches lack the ability to evaluate schedul-

ing decisions beyond the immediate future. For example, in

order to satisfy deadline bounded jobs, the scheduling system

must have predictability to assess the effect of its scheduling

decisions, which is not well solved by queue-based systems.

As an alternative, a plan-based scheduling system produces

an execution plan by assigning a start time and location for

each job in the waiting queue, considering not only currently

available resource but also predictions on job execution time.

As shown in Figure 1, in this manner, a “big picture” of

the transition of system states encompassing all running and

waiting jobs is generated, including which jobs are scheduled

to execute now and how the following jobs are coordinated,

leading to several major advantages of plan-based systems

over queue-based systems. First, the execution plan enables

the job scheduler to evaluate scheduling decisions and to find

the best one not only for now but also for future since we have

predictions of each job’s start time, expected completion time,

and the target nodes. We can have a clear and holistic view of

how the system state transits based on the current scheduling

decision. Second, since the execution plan holds very detailed

scheduling information for each job, the scheduler is able to

evaluate scheduling decisions using multiple criteria, e.g. wait

time, response time and system utilization. It is impossible to

do this in a queue-based system as a result of lack of such

information known in advance. Third, a plan-based system can

handle job requests with more complex requirements beyond

what are provided by aforementioned queue-based scheduling

policies, such as deadline or reservation, which are commonly

seen on Grid computing platforms.

Nevertheless, as a plan-based system would need to explore

a larger solution space of schedules than a queue-based system

within the same short period of time that such scheduling de-

cisions has to be made, most plan-based systems are based on

not-so-powerful local search [14] or tabu search [15] [16] due

to the lack of computational power to support more advanced

optimization algorithms, leading to schedules that are only

minimal locally. As a result, plan-based systems do not receive

enough attention, and thus only a few solutions are available:

some are out of date and not operational anymore; some are

commercial software and not free [17]. Current plan-based

systems are more used on the computational Grids, and are

less popular on general clusters or supercomputers [18] [19].

In this paper, we present a new plan-based scheduling

system to support effective resource management on HPC

systems. Leveraging more powerful processors that become

available recently, our plan-based system utilizes simulated

annealing (SA) as the optimization engine to perform schedul-

ing decisions online [20] [21]. SA gives our scheduler a great

flexibility in choosing performance metric to be optimized,

e.g. job wait time or system utilization, which is quite prefer-

able for plan-based systems when complex requirements are

presented. In comparison to evolutionary algorithms used in

other plan-based systems, whose effectiveness heavily depends

on how one encodes the solution space, by using SA our

scheduler can use the most straightforward way to encode

valid job schedules. Moreover, in comparison to local search

or tabu search those are usually trapped at local optimums,

the stochastic nature of SA allows our scheduler to move out

of local optima toward the global optimum.

We demonstrate that our plan-based system can be incor-

porated into queue-based systems as an alternative scheduling

scheme by implementing it inside the queue-based HPC sim-

ulator CQSim [22] [23]. We further evaluate the effectiveness

of our proposed plan-based system by performing exten-

sive trace-based simulations. Our simulations use publicly

available [24] real workload traces collected from a wide

range of production supercomputers including IBM BG/P

from Argonne National Lab (ANL), Altas from Lawrence

Livermore National Lab (LLNL), and Blue Horizon from San-

Diego Supercomputer Center. In comparison to the queue-

based system using FCFS with EASY backfilling, the sim-

ulation results show that our plan-based system can reduce

the job wait time by 40%, reduce the job response time by

30%, while slightly improve system utilization at the same

time. Moreover, the simulations confirm that our plan-based

system can indeed work online by completing each scheduling

optimization within one second.

The rest of the paper is organized as follows. We first

discuss background on scheduling in Section II. Then, an

overview of our plan-based system is presented in Section III,

followed by its details in Section IV. Our evaluation method-

ology is introduced in Section V. The experimental results are

presented in Section VI. Finally, Section VII concludes the

paper.

II. BACKGROUND

Most job scheduling systems available today are queue-

based systems. In such systems, one or more queues are

created with different priorities, properties, or constraints. The

objective of a queue-based scheduling system is to assign

available resource to waiting jobs following the queue or-

dering. A very simple strategy is FCFS (First Come, First

Served), which assigns resources to the jobs according to their

submission times [25]. A more comprehensive strategy may

assign priorities to jobs, e.g. in Shortest/Longest Job First

scheduling [4], or according to certain fair-sharing policy [26],

in order to prioritize particular jobs ahead of its ordering by

submission time. However, these approaches usually suffers

from fragmentation, where the next job to be scheduled at the

queue head may block all following jobs if there is not enough

resource for it. The resource that is currently free has to remain

idle and wasted, leading to low system utilization [10].

To resolve the issue of fragmentation, backfilling [9] were

introduced to allow the small jobs from the back of the queue

to execute before the larger jobs that arrived earlier. Two back-

filling variants are commonly used, named EASY [9] [10] [11]

and conservative [8] backfilling. In particular, EASY, which is

widely adopted by production systems for its simplicity, allows
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any job to be backfilled providing that it does not delay the

first job in the queue. On the other hand, for conservative

backfilling, backfilling of a job arrived later is subject to that

it does not delay any previous job in the queue. The algorithm

goes through the rest of the waiting queue to consider each

job for “backfilling” following their ordering in the queue. In

each iteration, the algorithm attempts to schedule the job to

start as early as possible, usually by performing a search for

the resource from present to the reserved start time.

Nevertheless, due to their greedy nature where the decisions

are made for the rest of the waiting jobs one-by-one following

the queue ordering, both EASY and conservative backfilling

algorithms only explore a small portion of the solution space

consisting of all valid schedules of the waiting jobs. More

sophisticated policies were proposed to explore a larger portion

of the solutions space by relaxing the strict queue order-

ing. Lookahead Optimizing Scheduler(LOS) was proposed

in Shmueli et al. [27] to improve system performance by

maximizing system utilization at present for every scheduling

step. To achieve so, a 0-1 knapsack problem to maximize

the resource usage is formulated at each scheduling step by

considering the waiting jobs that can be started immediately,

and is solved via dynamic programming. The authors further

indicated that empirically the scheduler running time can be

reduced without impacting system performance by only con-

sidering 50 waiting jobs. In our previous work [28] [29] [22],

window-based scheduling was proposed to allow the scheduler

to make decisions upon a “window” of waiting jobs instead

of individual ones, making it possible to optimize system

utilization and job performance simultaneously at present by

solving 0-1 multiple knapsack problems.

Although the aforementioned approaches did explore a

larger portion of the solution space than the classical backfill-

ing policies, to maximize the present system performance in a

greedy manner may miss certain opportunity to optimize the

overall system performance. For example, consider the jobs

in Fig. 1 (a) that are waiting to be scheduled onto an 8-node

system. The width of a job represents its expected runtime and

the height represents the number of nodes that it requires. The

job schedule in Fig. 1 (b) achieves 100% system utilization at

present, though the overall utilization and the makespan are

worse than the schedule in Fig. 1 (c), which does not achieve

100% system utilization for any instant.

The schedule in Fig. 1 (c) that maximizes the overall

system utilization and minimizes the makespan for the jobs

in Fig. 1 (a) could be obtained by a plan-based scheduling

system [18] [19]. Different from a queue-based scheduling

system that may prefer to schedule {J1, J2, J3, J4} to run

immediately (as depicted in Fig. 1(b)) in order to fully utilize

the available nodes at the moment, a plan-based scheduling

system may discover that better overall system utilization can

be obtained by not utilizing all the available nodes for now.

Such discoveries are usually driven by a global optimization

technique in the scheduler that assigns every job in the waiting

queue a start time considering resource availability hereafter.

Furthermore, as the scheduler is able to predict the resource

Fig. 1: Comparison of queue-based scheduling and plan-based

scheduling. (a) Jobs in the waiting queue; (b) possible result

from a queue-based scheduling system; (c) possible result from

a plan-based scheduling system. The height and width of a job

represent its required nodes and runtime respectively.

usage at any specified time, it is also possible for plan-based

scheduling systems to consider other system performance

metrics. For example, the mean wait time of the schedule in

Fig. 1 (c) is slightly smaller (better) than that in Fig. 1 (b).

Note that when a new job is submitted and there are jobs

whose previously planned start times have not arrived yet, a

plan-based scheduler may perform replanning [19] to reassign

start times for existing jobs and to assign start time for the new

job.

A few plan-based scheduling systems have been reported

in the literature. Computing Center Software [19] (CCS)

combined FCFS, Shortest Job First, and Longest Job First

strategies with a backfilling-like policy to generate a complete

schedule by assigning start times to each resource request.

While the emphasis was to demonstrate the unique features

that plan-based resource management systems may implement

but queue-based ones cannot, no quantitative comparison to

alternatives was provided. For grid systems, Global Optimising

Resource Broker and Allocator (GORBA) [18] used certain

simple policies for schedule creation and relied on an evo-

lutionary algorithm for its optimization, though the impact

to system performance was not reported. On the other hand,

Dalibor et al. [30] focused on the plan-based methods that

allow to handle both Quality of Service requirements from

Grid users and system performance metrics. Starting from

an initial scheduling, when a new job is submitted, Tabu

search was applied to optimize each successive scheduling

incrementally in order to reduce the running time required

for replanning. More recently, the TORQUE [17] Resource

Manager was implemented within a production system to

support plan-based scheduling. The initial scheduling was

constructed by conservative backfilling [8]. Still concerning

by the running time for replanning, the authors applied a
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local search based method instead of advanced optimization

to obtain successive schedules when new jobs are submitted.

Our work on plan-based systems differs from aforemen-

tioned works as we have adopted Simulated Annealing

(SA) [20] [31] as the optimization engine. SA gives our

scheduler a great flexibility in choosing performance metric

to be optimized, while being efficient enough to perform

scheduling decisions online. Unlike evolutionary algorithms

whose effectiveness heavily depends on how one encodes

the schedules [18], by using SA our scheduler can use the

most straightforward way to encode valid job schedules. In

comparison to local search or tabu search that are usually

trapped at local optimums, the stochastic nature of SA allows

our scheduler to move out of local optima toward the global

optimum. As we will show later on in Section VI, extensive

trace-based simulation confirms that our plan-based scheduler

can improve both system utilization and job performances.

Note that all schedulers will need to make decisions upon

the expected job running times reported by the users at the

time of job submissions, which are not necessarily accurate.

While the impact of such inaccuracy on queue-based systems

was studied [28] [11] [32] [33] [34], we do not consider this

issue here and would leave it to a future work.

III. SYSTEM OVERVIEW

The architecture of our proposed plan-based scheduling

system is shown in Fig. 2. We consider a HPC system managed

by a centralized scheduler that has complete control over all

jobs and system resources. We define a scheduling iteration

as the instant that a certain event takes place on the HPC

system, including job submission, job start, normal job end,

and job termination if the job exceeds its expected runtime.

Upon each scheduling iteration, all jobs that are waiting to

be executed are held in the waiting queue. Different from

queue-based schedulers that will process the jobs according to

their order in the waiting queue, our plan-based scheduler will

generate an execution plan of all the waiting jobs consisting of

their planned start times. The execution plan will consider the

present and expected future resource availability, as well as be

optimized for certain performance metric. The waiting jobs are

extracted from the queue to the execution queue sorted by their

planned start times, allowing the HPC system to start a job at

the head of the executing queue when its planned start time

arrives. Note that at each scheduling iteration, our scheduler

will re-plan all the jobs that are not started yet based on current

system state, and thus may rewrite the whole execution queue

to update the execution plan.

IV. PLAN-BASED SCHEDULING

The details of our plan-based scheduler are presented in

this section. We formulate the plan-based scheduling problem

as an optimization problem, provide insights into the choice

of performance metrics as optimization objectives, and design

a heuristic algorithm based on Simulated Annealing (SA) to

solve the problem.

A. Problem Formulation

As mentioned in Section III, our plan-based scheduler

considers all the jobs in the waiting queue for each scheduling

iteration. For each job, our scheduler needs to know its

resource usage, measured by the number of nodes, and its

expected runtime, measured by any unit of time, both reported

by the user at the time of job submission. Moreover, our

scheduler also needs to know what resource is available

currently and in the future, which can be estimated from the

start times of the jobs currently running on the HPC system

and their resource usages and expected runtimes. With such

information, our scheduler generates an execution plan of all

the waiting jobs, optimized for certain performance metric.

The output of our scheduler, denoted as the execution plan,
consists of all the waiting jobs ordered by their planned start

times.

Hence, the plan-based scheduling problem is formulated as

an optimization problem as follows.

Plan-Based Scheduling Problem: Given the current system

state consisting of the start time, the expected runtime, and

the resource usage for each running job, the scheduler should

generate an execution plan for the jobs in the waiting queue

that assigns each waiting job a start time in order to minimize

certain performance metric.

Note that since our plan-based scheduler works in an

online mode, it is critical for the above plan-based scheduling

problem to be solved efficiently in a short time period (e.g.,

in seconds).

B. Performance Metrics for Optimization

The choice of the performance metric to be optimized by

our plan-based scheduler at each scheduling iteration will

impact the overall performance of the HPC system. As job

wait time and system utilization are among the most important

scheduling performance metrics for HPC systems, we propose

to consider the following three optimization metrics. Three

plan-based scheduling policies, each optimizing one of the

three metrics, are denoted by PLAN 1, PLAN 2 and PLAN 3

respectively for ease of presentation.

• Mean Job Wait Time (PLAN 1). For each job, its wait

time refers to the time elapsed between the moment when

it is submitted and the moment when it starts to run.

Intuitively, the mean job wait time that is calculated as

the average across all the jobs in the waiting queue can

be minimized by our scheduler for each execution plan

in order to minimized the overall mean job wait time.

• Mean Squared Job Wait Time (PLAN 2). The mean job

wait time as a metric in PLAN 1 to optimize job schedules

cannot prevent one job to be postponed arbitrarily by

many other jobs as long as their total wait time remains

the same. Such pathetic case may cause job starvation

that is quite unfriendly for users. Therefore, we propose

to consider mean squared job wait time as a metric, which

is calculated as the average of the job wait time timed

by itself for all the jobs in the waiting queue. Intuitively,

the mean squared job wait time could be treated as a
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Fig. 2: Our proposed plan-based scheduling system.

weighted average of the job wait times, where the weights

change dynamically to prioritize jobs that have already

been waiting for a long time, allowing our scheduler to

schedule them to start earlier.

• System Utilization (PLAN 3). For each execution plan,

we define its system utilization to be the ratio of the total

node-hours used by the jobs to the total elapsed system

node-hours from the present to when all the running and

queued jobs complete. Clearly, since the total node-hours

used by the jobs is a constant for all job schedules at

a particular scheduling iteration, to maximize the system

utilization is equivalent to minimize the finish time of all

the jobs in our plan-based scheduling problem.

C. Scheduling Optimization by Simulated Annealing

We solve the plan-based scheduling problem using sim-

ulated annealing (SA), which is a stochastic metaheuristic

originated from the physical heating and annealing process

that removes defects from a material [20]. As an iterative

metaheuristic for optimization, SA depends on the choice of

a neighbourhood structure defined by a strategy to move from

one solution to another solution in the solution space, and on

the choice of a cost function that maps a solution to a positive

real number that should be minimized. Unlike mathematical

optimizations that are effective for continuous solution spaces

with special properties like convexity, SA is usually more

effective when the solution space has no such properties, e.g.

for the plan-based scheduling problem as we will discuss

below. On the other hand, unlike other metaheuristics that may

also optimize with the neighbourhood structure and the cost

function, e.g. greedy algorithm and tabu search, SA is less

likely to be trapped into local minima due to its stochastic

nature. While moving from solutions with higher costs to those

with lower costs are always accepted, SA introduces a variable

named “temperature” to control the probability to accept a

move from a solution with a lower cost to a solution with a

higher cost, which is inspired by the annealing process in heat

treatment that uses temperature to control changes in material.

SA starts with a high temperature where such moves are more

likely to be accepted so it will not be trapped to local minima,

and gradually decreases the temperature so the effort is more

focused on improving solutions in a greedy manner by the end

of the optimization.

We choose the cost function to be the same as the perfor-

mance metric that need to be minimized in our plan-based

scheduling problem. To define the neighbourhood structure

that can be explored effectively and efficiently by SA, we

would need to first consider the solution space of our plan-

based scheduling problem. Obviously we should only consider

those valid scheduling solutions where the resource usage limit

is observed for any instant. Since from the user’s perspective

one would prefer to start a job as soon as possible, we further

restrict the solution space to the scheduling solutions where

it is impossible to start any job earlier without delaying any

other jobs. Such restriction is essential since there are only

finite number of such solutions, and we may represent each

such solution by a permutation of jobs in the waiting queue.

More specifically, for each job schedule, we obtain a

permutation P of the jobs in the waiting queue by ordering

them according to their starting times (where ties are broken

arbitrarily), and no two solutions may lead to the same

permutation. On the other hand, once a permutation P of

the jobs in the waiting queue is given, we may obtain a job

schedule by scheduling them one at a time as early as allowed

by the resource usage following the ordering of P . Therefore,

if there are n jobs in the waiting queue, there will be at most

n! such scheduling solutions. The neighbourhood structure of

the solution space for SA is thus defined upon the permutation
representation: for a solution represented by a permutation

P , we define its neighboring solutions to be the permutations

obtained by removing an arbitrary job and then inserting it

back to an arbitrary position in P .

Nevertheless, we cannot evaluate the cost function directly

upon the permutations since the cost function depends on

the actual times that the jobs are scheduled to run. It is

therefore necessary to actually compute an execution plan from

a permutation P by assigning each job in the waiting queue

a start time. Moreover, this computation has to be done very

efficiently since its running time dominates the running time

of the SA optimization. To support this computation, We use a
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linked list of tuples to represent the available resource, where

each tuple (t, a) denotes that there are a nodes available from

time t, until the time specified by the next tuple if (t, a) is

not the last in the list. We use the following procedure to

compute an execution plan from P . We first initializes the

list using the expected finish time and the resource usage of

each running job. The size of the list is at most m + 1 if

there are m running jobs. Then we schedule each job in the

waiting queue following the ordering of P by scanning the

list from the front to the end in order to find the earliest time

that the job may start at. The list will need to be updated

reflecting the newly scheduled job, possibly with one more

tuple created at its expected finish time. Therefore, if there

are n jobs in the waiting queue and m running jobs, the size

of the list is bounded by m+n+1, and to find the start time

of each waiting job takes O(m+ n) time. Overall, the space

and the time complexities of each computation are O(m+n)
and O(n(m+ n)) respectively.

Algorithm 1 Plan-Based Scheduling by Simulated Annealing

Input: Running and waiting jobs, cost function, SA parameters.
Output: An optimized execution plan.

1: Generate an initial permutation P of waiting jobs.

2: Memorize P as Pbest.

3: Initialize temperature T as T0.

4: while T > Tth do
5: for i = 1 to N do
6: Randomly generate P ′ from P .

7: if P ′ is better than P then
8: P ← P ′.
9: else
10: P ← P ′ probabilistically.
11: end if
12: Memorize P as Pbest if P is better than Pbest.

13: end for
14: T ← rT .
15: end while
16: Compute execution plan from Pbest and return.

The pseudocode to solve our plan-based scheduling problem

by SA is shown in Algorithm 1. We generate the initial permu-

tation following the ordering of the jobs in the waiting queue.

The progress of simulated annealing is controlled by four SA

parameters T0, Tth, N , and r: T0 is the initial temperature; the

outer loop continues as long as the temperature T is higher

than Tth and it reduces T each iteration by 0 < r < 1; the
inner loop attempts N moves at each temperature, accepting

those that improve the solution P , and those that degrade P
using a probability function [20]. The best permutation seen so

far is memorized in Pbest throughout and is used to compute

the result execution plan. If a sufficiently long time is allowed

for the SA run, selecting appropriate parameter values may

not be an issue, since an SA algorithm with a high initial

temperate and a slow cooling scheme performs well. However,

our plan solution has to be found by an SA algorithm within

the typical 30-second [29] time frame that the HPC scheduler

has to make a decision. An experimental design has often

been used for selecting parameter value [20] [31], we omit

here for simplicity. In our experiments, we set the parameters

(T0, Tth, N, r) to (1, 0.0001, 100, 0.9). This parameter setting

allows us to solve the plan-based scheduling problem at each

schedule decision-making in one second and at the same time

results in job schedules with good quality as discussed in

Section VI.

V. EVALUATION METHODOLOGY

A. Trace-Based Scheduling Simulation Using CQSim

We implement our plan-based scheduling system in the

event-driven HPC scheduling simulator CQSim [23]. and

evaluate its performance under a variety of workloads using

extensive trace-based simulations. CQSim reads job events like

job submission, job start, and job complete from a trace file

in order to emulate job scheduling on HPC systems based on

specific scheduling and allocation policies [22]. In particular,

CQSim supports scheduling by FCFS with EASY backfilling,

which will be compared to our proposed plan-based scheduling

policies PLAN 1, PLAN 2, and PLAN 3.

B. Production Job Traces

Trace #nodes #jobs Duration

ANL 40,960 68,936 Jan/09-Sep/09
LLNL 9,216 60,332 Nov/06-Jun/07
SDSC 1,152 67,155 May/00-Dec/01

TABLE I: Production workload traces used for evaluation.

Fig. 3: Distribution of job sizes.

We use three publicly available real workload traces col-

lected from a wide range of production supercomputers in-

cluding Intrepid from Argonne National Lab (ANL), Altas

from Lawrence Livermore National Lab (LLNL), and Blue

Horizon from San-Diego Supercomputer Center (SDSC) [24].

Each trace contains a list of jobs, each consisting of a record

of its size, arrival time, actual and estimated runtime, and other

descriptive fields. The overall statistics of the three traces are

given in Table I.

Fig. 3 further illustrates the distribution of job sizes in these

traces. It can be seen from the figure that these traces represent

the variety of job scheduling problems a scheduler would need

to solve. In particular, ANL represents capability computing

to solve large problems, whereas LLNL and SDSC represent

capacity computing to solve a large number of middle-sized
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and small-sized problems respectively. In the ANL trace, half

of the jobs require 2K nodes. On the other hand, while the

number of large-sized jobs that require more than 16K nodes

is relatively low, these jobs consume a considerable amount

of node-hours due to their sizes. In the LLNL trace, job sizes

spread more evenly with jobs requiring 1K nodes being the

majority as 20%. In the SDSC trace, more than half of the

jobs require 8 nodes only. We will discuss the impact of job

sizes on different scheduling policies in Section VI.

C. Evaluation Metrics

Although our plan-based scheduling policies PLAN 1,

PLAN 2 and PLAN 3 use different metrics to optimize

job schedules, we compare them with FCFS with EASY

backfilling using a fixed set of metrics measuring system

and individual job performances, including job wait time and

system utilization as discussed in Section IV-B, as well as job
response time, which is defined as the amount of time from

when a job is submitted until the job completes, i.e. its wait

time plus its runtime.

VI. EXPERIMENTAL RESULTS

A. System Scheduling Performance

Trace FCFS PLAN 1 PLAN 2 PLAN 3
ANL 0.631 0.641 0.640 0.642

LLNL 0.744 0.750 0.751 0.758
SDSC 0.780 0.785 0.782 0.793

TABLE II: Comparison of system utilization under different

scheduling policies.

The system utilizations from our trace-based simulations for

all 4 scheduling policies including our plan-based PLAN 1,

PLAN 2, and PLAN 3, as well as the queue-based FCFS with

EASY backfilling, which will be denoted as FCFS hereafter

for ease of presentation, are compared in Table II for all three

traces. It is clear that our plan-based policies always lead

to better system utilization than FCFS. This is even true for

PLAN 1 and PLAN 2 where the system utilization is not the
objective of optimization. Nevertheless, PLAN 3 achieves the

highest system utilization among the 4 policies as it explicitly

optimizes for system utilization.

The mean job wait times and mean job response times for

all policies and all traces are compared in Fig. 4 and Fig. 5

respectively for each month. It can be seen that our plan-based

policy PLAN 2 always lead to better mean job wait time and

mean job response time than FCFS. PLAN 1 and PLAN 3,

on the other hand, outperform FCFS in all but two months

3 and 4 for LLNL. Interestingly, the figures show that our

choice to optimize for mean squared job wait time in PLAN

2, though sometimes may lead to worse results than PLAN

1, allows PLAN 2 to reduce job wait time and job response

time in comparison to FCFS more consistently for cases where

PLAN 1 cannot.

For our plan-based policies, the relative reductions in mean

job wait time, and similarly in mean job response time, differ

for different traces in comparison to FCFS. For LLNL in Fig. 4

(b), we see that in month 6-8, the mean job waiting times by

our plan-based policies are much smaller than that of FCFS.

This is most likely due to the fact that plan-based schedulers

are allowed to pick any job from the job waiting queue to start

freely and thus may avoid the pathetic case for FCFS where

a large job is stuck in the head of waiting queue, blocking

all smaller jobs submitted later. For ANL in Fig. 4 (a), the

improvements by PLAN 1 and PLAN 2 over FCFS are more

consistent across all the months, achieving 40% of reduction

on average, which is quite significant considering that ANL

has the largest system size among the three traces. On the other

hand, although the improvements by PLAN 3 over FCFS can

also be observed for most of the months in Fig. 4 (a), the

reductions are not as large as PLAN 1 and PLAN 2 as the job

wait time is not the objective of optimization for PLAN 3.

B. Individual Job Performance

As we can see from the previous subsection, our plan-based

scheduling system is able to improve system performance in

comparison to FCFS for system utilization, mean job wait

time, and mean job response time. However, it is not possible

to measure individual job performance using these metrics

as they may vary significantly for different jobs. Since the

wait time for any job is affected by its size and runtime, we

therefore measure individual job performance by considering

mean wait time for jobs with similar sizes and runtimes. We

present here the results for PLAN 2 and FCFS for the sake

of brevity and note that the results for PLAN 1 and PLAN 3

show similar trends.

The baseline mean wait times for jobs binned with their

sizes and runtimes obtained by FCFS are visualized in Fig. 6

(a)(d)(g) for the three traces respectively. These figures are

created by dividing the job size range and the job runtime

range of each job traces into 15 logarithmic bins respectively.

Each point in the figure is colored according to the mean job

wait time of the bin. The areas in the figures that are uncolored

are empty bins without job. Generally speaking, the jobs in the

blue bins are with less wait time, while those in the red bins

are stuck in the waiting queue for longer time. The mean wait

times for jobs obtained by our PLAN 2 policy are visualized

in Fig. 6 (b)(e)(h) for the three traces respectively, using the

same bin setting as that of FCFS. Overall, for all three traces,

we can observe from Fig. 6 that for both FCFS and PLAN

2, jobs requiring less nodes and shorter runtime have smaller

wait time, and jobs requiring more nodes and longer runtime

would have to stay in the waiting queue longer. This is the

case for FCFS because smaller jobs will have a better chance

for backfilling. For PLAN 2, this is the case because it is more

effective to optimize the overall job wait time by reducing wait

times for smaller and shorter jobs, and larger and longer jobs

may still need to wait longer due to lack of system resource.

To provide a comparative view of the two policies FCFS

and PLAN 2, we further calculate the ratios of the mean

job wait times by PLAN 2 to those by FCFS, and visualize

them in Fig. 6 (c)(f)(i), where blue means our PLAN 2 policy
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(a) ANL (b) LLNL (c) SDSC

Fig. 4: Comparison of mean job wait time under different scheduling policies.

(a) ANL (b) LLNL (c) SDSC

Fig. 5: Comparison of mean job response time under different scheduling policies.

outperforms FCFS with better wait time and red means FCFS

has better wait time than PLAN 2. These figures show that for

most of the bins, our PLAN 2 policy outperforms FCFS. We

find that PLAN 2 almost always achieves much smaller wait

times than FCFS for smaller and shorter jobs. One possible

reason is that when the system is actually saturated, which

is a state characterized by a continuously growing length of

waiting queue, our plan-based scheduler would prefer to run

smaller and shorter jobs first instead of to run a larger and

longer job first, as the later may block the former for a long

waiting time.

On the other hand, for larger and longer jobs, it can be seen

that PLAN 2 also achieves significant reduction of wait times

for ANL and SDSC, indicating PLAN 2 is also helpful for

these kind of jobs. For the LLNL in Fig. 6 (f), we observe

that the color turns into dark red close to the top right corner,

indicating that FCFS achieves better wait times than PLAN

2 for jobs that are both large and long. This generally shows

how PLAN 2 makes trade-off wait times among different jobs

in order to optimize for the overall system performance – as

only 9% of the jobs in LLNL are in those bins requiring 4K

nodes, PLAN 2 makes them to wait at most 2 times as long as

that of FCFS while allowing smaller and shorter jobs to start

much sooner so that the overall system performance can be

greatly improved. Nevertheless, if one would prefer to explore

different trade-offs among smaller and larger, as well as shorter

and longer jobs, it should be possible to adjust the performance

metric for optimization as discussed in Section IV-B for our

plan-based scheduler, which would be leaved as a future work.

C. Result Summary

Overall, the following key observations can be made from

the above trace-based simulations:

• Compared to traditional queue-based scheduling, plan-

based scheduling can achieve much better system per-

formance even under high loads in terms of mean job

wait time, mean job response time, and system utilization.

Our plan-based scheduler can deliver over 40% reduction

on average job wait time, 30% reduction on average

job response time, and 1% improvement on system uti-

lization, varying depending on the different choices of

optimization metrics.

• In addition to the improvements of system performance,

plan-based scheduling can improve performance of cer-

tain kinds of jobs depending the choice of optimization

metrics. In particular, if overall system performance is

optimized, our plan-based scheduler can reduce job wait

time for smaller and shorter jobs significantly without

delaying larger and longer jobs. Further, our scheduler

often manages to start the small-size jobs immediately

266



(a) ANL FCFS (b) ANL PLAN 2 (c) ANL PLAN 2/FCFS

(d) LLNL FCFS (e) LLNL PLAN 2 (f) LLNL PLAN 2/FCFS

(g) SDSC FCFS (h) SDSC PLAN 2 (i) SDSC PLAN 2/FCFS

Fig. 6: (a)(b)(d)(e)(g)(h) Mean job wait time, binned by size and length of job: blue for jobs with less wait time, red
for jobs stuck in the waiting queue for longer time. (c)(f)(i) Wait time ratio between PLAN 2 and FCFS, binned by
size and length of job: each point is colored according the mean wait job time of PLAN 2 in each bin divided by that
of FCFS, blue for PLAN 2 to outperform FCFS, red for FCFS to have less wait time. Similar results are observed for
PLAN 1 and PLAN 3 (not shown).

when their wait times are longer by using FCFS with

EASY backfilling.

• When the job requests contain huge amount of small-size

jobs, we encourage the use of PLAN 2 in order to improve

individual job performance, and if system utilization is

more important, PLAN 3 is a better choice.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel plan-based schedul-

ing system to support effective resource management on HPC

systems. Our design was motivated by the observation that

existing queue-based schedulers have drawbacks of making

isolated decision that would compromise the system perfor-

mance even with backfilling. Using a plan-based scheduler,

users can better plan their work as the system’s behavior

becomes more predictable. Three performance metrics, namely

mean job wait time, mean square job wait time, and system

utilization have been investigated for our plan-based scheduler

that used simulated annealing for optimization. Extensive

trace-based simulations with traces from production HPC
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systems demonstrate that in comparison to the queue-based

scheduling system using FCFS with EASY backfilling, our

plan-based system can reduce the job wait time by 40%,

reduce the job response time by 30%, while slightly improving

system utilization at the same time. Moreover, our plan-based

system can be run online by solving the scheduling problem

at each scheduling iteration within one second, which makes

it practical for using on production HPC systems.

Several avenues are open for future work. One is to further

extend the capabilities of our design so that it can meet

additional requirements, e.g. job priorities. In addition, we

would like to investigate the impact of inaccurate expected job

runtimes as provided by the users on our plan-based schedul-

ing system. Furthermore, it would be very useful to explore

various methods to further reduce the algorithm running time

in order to explore a larger portion of the solutions space for

a better job schedule.
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