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Abstract—When a system fails to function properly, health-related data are collected for troubleshooting. However, it is challenging to

effectively identify anomalies from the voluminous amount of noisy, high-dimensional data. The traditional manual approach is time-

consuming, error-prone, and even worse, not scalable. In this paper, we present an automated mechanism for node-level anomaly

identification in large-scale systems. A set of techniques is presented to automatically analyze collected data: data transformation to

construct a uniform data format for data analysis, feature extraction to reduce data size, and unsupervised learning to detect the nodes

acting differently from others. Moreover, we compare two techniques, principal component analysis (PCA) and independent

component analysis (ICA), for feature extraction. We evaluate our prototype implementation by injecting a variety of faults into a

production system at NCSA. The results show that our mechanism, in particular, the one using ICA-based feature extraction, can

effectively identify faulty nodes with high accuracy and low computation overhead.

Index Terms—Anomaly identification, large-scale systems, independent component analysis, principal component analysis, outlier

detection.

Ç

1 INTRODUCTION

1.1 Motivation

IT has been widely accepted that failures are ongoing facts
of life to be dealt with in large-scale systems. Studies have

shown that in production systems, failure rates are as high as
more than 1,000 per year, and depending on root cause of the
problem, the average failure repair time ranges from a couple
of hours to nearly 100 hours [14], [27]. Every hour that a
system is unavailable can cause undesirable loss of proces-
sing cycles, as well as substantial maintenance cost.

When a system fails to function properly, health-related
data are collected across the system for troubleshooting.
Unfortunately, how to effectively find anomalies and their
causes in the data has never been as straightforward as one
would expect. Traditionally, human operators are respon-
sible of examining the data with their experience and
expertise. Such manual processing is time-consuming,
error-prone, and even worse, not scalable. As the size and
complexity of computer systems continue to grow, so does
the need for automated anomaly identification.

To address the problem, in this paper, we present an
automated mechanism for node-level anomaly identification.
Different from fine-grained root cause analysis that aims to
identify the root causes of problems or faults, ours is a
coarse-grained problem localization mechanism focusing
on detecting culprit node(s) by automatically examining the

health-related data collected across the system. By finding
the abnormal nodes, system managers are able to know
where to fix the problem and application users can take
relevant actions to avoid or mitigate fault impact on their
applications. Following the terminology used in the
dependability literature[6], a fault—like a hardware defect
or a software flaw—can cause system node to transit from a
normal state to an error state, and the use of the node in the
error state can lead to node failure. Hence, we seek to
discover the nodes in error or failed states, which are also
called abnormal states in the paper; we regard these nodes as
anomalies that require further investigation.

1.2 Technical Challenges

Finding anomalies is a daunting problem, especially in
systems composed of vast amount of nodes. We classify the
key challenges into four categories as follows:

. Data diversity. Depending on the monitoring tools
used, the data collected often have different formats
and semantics, thereby making it hard to process
them in a uniform way.

. Data volume. Due to the size of modern systems, data
collected for analysis are characterized by their huge
volume, e.g., in order of gigabytes per day [14].
Finding anomalies from such potentially over-
whelming amount of data is like finding needles in
a haystack.

. Data dependency. Most measured data are mixtures of
independent signals and they often contain noises. A
naive method that directly compares the measured
data for anomalies is generally inaccurate by produ-
cing substantial amount of false alarms.

. Anomaly characteristics. In large-scale systems, anom-
aly types are many and complex. Moreover, node
behaviors are dynamically changing during operation
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as system nodes are dynamically assigned to different
tasks. Thus, it is extremely difficult to precisely define
the normal behaviors of system nodes.

1.3 Paper Contributions

The primary contribution of this paper lies in a collection of

techniques to find abnormal nodes (i.e., anomalies) via

automated analysis of system data. Specifically, data

transformation is first employed to manage data diversity

by reducing the problem of anomaly identification with

different data types to the problem of finding outliers in a

new space of a single data type (Section 3.1). Second, to

address the sheer data volume and inherent data depen-

dency, feature extraction is introduced to convert the multi-

dimensional data into a space of lower dimensions for

quick and better analysis (Section 3.2). In particular, we

present and compare two techniques, namely principal

component analysis (PCA) and independent component

analysis (ICA), for feature extraction. In addition to the

main objective of this paper—to design an automated

anomaly identification mechanism for large-scale systems,

another purpose of this study is to compare PCA and ICA-

based feature extractions and further to point out their

strengths and limitations. Finally, unlike the traditional

methods that require samples of both normal and abnormal

data for training, outlier detection automatically extracts the

expected normal behavior from the data and flags

significant deviations from the expected as anomalies

(Section 3.3). Together, these techniques form an unsuper-

vised learning approach, which can address the unknown

and dynamic characteristics of anomalies.
We evaluate our prototype system to identify system

faults that are manually injected into a production system at

the National Center for Supercomputing Applications

(NCSA). Under a variety of faults injected, the automated

mechanism using ICA-based feature extraction is capable of

detecting every anomalous node, with a false alarm rate less

than 8 percent. Our framework incurs very low runtime

overhead. In our experiments, it takes less than 0.25 second

to identify up to 20 anomalous nodes out of 256 nodes. We

believe the high accuracy and time efficiency attribute to the

novel use of feature extraction, which can significantly

reduce data size by 96 percent. Our results also suggest that

the ICA-based mechanism is a promising approach to

automate anomaly identification in large-scale systems.
While the proposed mechanism mainly targets on failure

diagnosis, it can also be integrated with tools like that of

[44], [45] to aid failure prediction by pinpointing the

potential locations of system failures.

1.4 Paper Outline

The rest of the paper is organized as follows: Section 2 gives

an overview of our methodology, followed by a detailed

description in Section 3. In Section 4, we describe our

experiments and list experimental results. Section 5

discusses the benefits and limitations of the proposed

mechanism. A brief discussion of related works is presented

in Section 6. Finally, we conclude the paper in Section 7.

2 METHODOLOGY OVERVIEW

“Computers are incredibly fast, accurate and stupid; humans are
incredibly slow, inaccurate and brilliant; together they are
powerful beyond imagination.”—Albert Einstein

Drawing on the wisdom in the above quotation by Albert
Einstein, we propose an anomaly identification framework
as shown in Fig. 1 in which computers are utilized to
process massive quantity of data by leveraging pattern
recognition technologies and human can focus on final
validation. Health-related data are collected across the
system and sent for automated data analysis that includes
dynamic grouping and group analysis. The automated
mechanism can be triggered either periodically with a
predefined frequency or by a system monitoring tool in case
of unusual events. In this paper, we focus on detecting
anomalies in homogeneous collection of nodes (also called
“groups”), and heterogeneous collections will be addressed
by grouping in the future. The resulting list of anomalies
will be sent to system administrators for final validation. As
we will see later, by combining the fast processing
capability of computers with human expertise, the pro-
posed mechanism can quickly discover anomalies with a
very high accuracy.

Our group analysis is based on two key observations.
First, the nodes performing comparable activities generally
exhibit similar behaviors [5], [24], [33]. Second, faults are
rare events, so the majority of system nodes are functioning
normally. For each group, three tightly coupled techniques
are applied to find the nodes that exhibit different behaviors
from the majority as follows:

1. Data transformation. It is responsible for collecting
relevant data across the system and assembling them
into a uniform format called feature matrix (generally
in high dimensionality). Here, a feature is defined as
any individually measurable variable of the node
being observed, such as CPU utilization, available
memory size, I/O, network traffic, etc.

2. Feature extraction. A feature extraction technique,
such as PCA or ICA, is applied on the feature matrix
to generate a matrix with much lower dimensionality,
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Fig. 1. Overview of anomaly identification. Node grouping is needed to
dynamically divide system resources into groups and the nodes in the
same group are expected to exhibit similar behaviors. Three group
analysis techniques, namely data transformation, feature extraction, and
outlier detection, are applied per group to find abnormal nodes (i.e.,
anomalies). These anomalies can manually be validated by system
administrators. Note that the shaded boxes indicate the major
contributions of this study (Sections 3.1-3.3).



while keeping the most relevant information in the
data. This not only accelerates data analysis by
reducing data dimensionality but also improves data
analysis by removing inherent data dependency.

3. Outlier detection. It determines the nodes that are “far
away” from the majority as potential anomalies. By
analyzing the low-dimensional matrix produced by
feature extraction, a cell-based algorithm is used to
quickly identify the outliers.

To truly make the above mechanism useful in practice, we
intend to provide two guarantees in the design of our
anomaly identification system. First is high accuracy, in terms
of low false alarm rate and extremely low missed rate (i.e.,
close to zero). Second is time efficiency, meaning to quickly
identify faulty nodes from the data collected, no matter how
large are the data. The first is essential for its acceptance by
the community, while the second is needed for quick
detection and timely response.

3 DESCRIPTION

In this section, we present the details of our group
analysis mechanism.

3.1 Data Transformation

The goal of this step is to gather system data for
representing node behaviors and then transform the data
into a uniform format for data analysis. A fault typically
induces changes in multiple subsystems of a node, such as
CPU, memory, I/O and network. For example, a memory
leaking may affect the amount of free memory and the CPU
utilization rate; an operation to a malfunctioning disk may
lead to huge IO time and long CPU idle time. Hence, in
order to cover a broad fault space, it is necessary to collect
and store feature data from all the subsystems per node.
Furthermore, it is beneficial to track and store the
tendencies of these features by collecting multiple samples.
Note that a feature is defined as any individually measur-
able variable of the node being observed.

Modern computer systems are deployed with various
health monitoring tools. On the hardware side, hardware
sensors are widely deployed to monitor device attributes,
such as CPU temperature and fan speed [18], [19], [22]. On the
software side, most operating systems provide various event
logs and/or system calls to track memory, processes, network
traffic, paging, and block I/O information. In addition, a
number of third party software tools have been developed for
system monitoring, such as Ganglia, Supermon, Inca, splunk,
and innumerous others [20], [39], [40], [41]. From the
application level, there also exist tools to collect application
performance data through source-based profiling or dynamic
instrumentation [24]. The data collected by these tools can be
used by our framework.

As data collected from different tools are in arbitrary
formats, data preprocessing is needed. Possible preproces-
sing includes converting variable-spaced time series to
constant-spaced ones, filling in missing samplings, generat-
ing real-value samples from system logs, and removing
period spikes or noises [33], [35], [38].

Fig. 2 describes data preprocessing and transformation
whose goal is to construct feature matrix for data analysis. Let

m be the number of features collected from n nodes. In order
to capture the tendencies of these features, k snapshots are
sampled per node. As a result, there are n matrices
Fiði ¼ 1; 2; . . . ; nÞ, each representing the feature matrix
collected from the ith node. In each matrix Fi, the element
fih;j denotes the value of featureh collected at the jth snapshot,
where 1 � j � k and 1 � h � m. The elements in the matrices
are supposed to be preprocessed as mentioned above.

To facilitate data analysis, we reorganize each matrix Fi

into a long ðm� kÞ column vector fi ¼ ½fi1;1 fi1;2 � � � fim;k�
T .

We then construct a single large matrix as the feature matrix
for the group:

F ¼ ½f1; f2; . . . ; fn�: ð1Þ

The transformation from a multiway matrix to a single
large matrix makes it easy to diagnose anomalies across
different nodes.

3.2 Feature Extraction

After constructing feature matrix, a simple method is to
directly compare the data for anomalies. However, this
simple comparison can lead to high miss rate and false alarm
rate, as we will see in Section 4. There are several reasons for
the ineffectiveness. First, useful information may be hidden
between features and it is hard for direct comparison to
discover the hidden information. Second, some features have
large fluctuation even when they are collected from normal
nodes, while other features may be close to each other even
when they are collected from the nodes in different states (i.e.,
normal versus abnormal states). Third, noise often exists in
the data, thereby distorting the meaning of the data. Even
worse, the fluctuation and noise may propagate across
multiple samples, thereby impacting the accuracy of anomaly
localization. Finally, analyzing high-dimensional matrices is
time-consuming. To address these issues, feature selection and
feature extraction are two well-known techniques.

Feature selection is a technique to select an optimal subset
of the original features based on some criteria [16].
However, feature selection is a supervised learning, requir-
ing a priori knowledge of both normal and abnormal
behaviors. Moreover, an optimal selection requires an
exhaustive search of all the possible subsets of features,
thereby being time-consuming. In general, feature selection
works well with irrelevant features. As mentioned before, a
fault typically induces changes in multiple subsystems, and

176 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

Fig. 2. Data transformation. Here, n is the number of nodes, m is the
number of features, and k is the number of samples per feature. Fi

represents the feature matrix of the ith node and F denotes the feature
matrix of the group. It enables us to generate a uniform data type called
feature matrix from diverse data sources for data analysis.



hence, is reflected in multiple features. In other words, these
features are not irrelevant, thereby greatly limiting the
effectiveness of feature selection.

Unlike feature selection, feature extraction transforms the
original feature space into a space of fewer dimensions in
which the information most relevant to the problem is
preserved [16]. The data presented in a low-dimensional
subspace are easier to separate into different classes. Further,
as we will see in Section 4, by transforming the data into a
new space that keeps the most relevant information, feature
extraction can also improve analysis accuracy.

In this paper, we investigate two feature extraction
techniques: 1) PCA and 2) ICA. Both are well-known
pattern recognition techniques. Both belong to unsuper-
vised learning, meaning that we do not need to know the
data label, e.g., whether it is normal or abnormal. There-
fore, they work well for unknown anomaly patterns.
Another advantage of these techniques is that in the new
space, the difference between the classes of data is
amplified, while the difference within the same class
becomes less. This can greatly help to separate anomalies
from normal nodes. While PCA has been explored for
problem diagnosis and application classification [25], [26],
ICA has been mainly used in the field of signal processing
or face recognition [30], [32]. As mentioned before, one goal
of this study is to compare PCA- and ICA-based anomaly
identification mechanisms.

Fig. 3 presents PCA- and ICA-based feature extractions
on feature matrix F obtained from data transformation.
Before using PCA or ICA, a normalization process is first
applied on feature matrix F . We consider that all the
features are equally important. Note that the collected data
may have different scales. For example, memory size is
generally a large number, while CPU utilization is usually
less than 1.0. To transform the data into a uniform scale, the
matrix F is first normalized to F 0 such that feature values
are controlled in the range between 0.0 and 1.0. Next, it is
necessary to adjust F 0 to F 00 so that its columns have zero
mean. This ensures that PCA and ICA dimensions capture
true variance, thereby avoiding skewing results due to
differences in mean [25]. For data matrix F 00, each column
represents a node and each row gives the values of a
particular feature.

3.2.1 PCA-Based Feature Extraction

PCA is a well-known dimensionality reduction technique
[16], [25]. Basically, it performs linear transformation to
map a given set of data points onto new axes (called
principal components). When working with zero-mean data,
each principal component has the property that it points
in the direction of maximum variance remaining in the
data, given the variance already accounted for in the
preceding components.

We apply PCA on the matrix F 00, treating each column of
F 00 as a data point in IRm�k. It first calculates the covariance
matrix of F 00:

C ¼ 1

n
F 00F 00T : ð2Þ

It then calculates the Eigenvalues of C and sorts them in a
descending order: �1 � �2 � � � � � �m�k. The first s eigen-
values that satisfy the following requirement are chosen:Ps

i¼1 �iPm�k
i¼1 �i

� TH; ð3Þ

where TH < 1 is a predefined threshold.

A projection matrix A ¼ ½a1; a2; . . . ; as� is constructed,

where ai (the ith principal component) is the Eigenvector

corresponding to �i. Each data point f 00i 2 IRm�k is then

projected into a data point yi 2 IRs:

yi ¼ ATf 00i ; i ¼ 1; . . . ; n: ð4Þ

The complexity of computing all the eigenvectors and
eigenvalues of C is not trivial. However, we only need to
calculate the first s eigenvectors and eigenvalues (typi-
cally, s � 3). A neural network-based method can be
applied for the calculation, with a linear complexity and
fast convergence [36].

3.2.2 ICA-Based Feature Extraction

ICA is a blind source separation technique [30]. Similar to
PCA, ICA also finds a new set of basis vectors for vector
space transform. However, PCA finds the directions of
maximal variance by using the second order statistics (i.e.,
covariance matrix), while ICA finds the directions of
maximal independence by using higher order statistics. Unlike
PCA, the basis vectors in ICA (called independent components)
are not necessarily orthogonal and in order. Fig. 4 pictorially
shows the major differences between PCA and ICA.

There are a number of algorithms for performing ICA. For
the purpose of fast convergence, we choose the FastICA
algorithm developed by Hyvärinen and Oja [30]. Whitening is
a typical preprocessing step used to simplify and reduce the
complexity of ICA algorithms. It ensures that all the
dimensions are treated equally before the algorithm is run.
For a vector v, its whitening means that its covariance matrix
is equal to the identity matrix, that is, 1

n vv
T ¼ I. To whiten the

matrix F 00, we first calculate its covariance matrix C (2), and
then calculate nonzero Eigenvalues of C in a descent order:
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Fig. 3. Feature extraction. Here, F is the feature matrix obtained via data

transformation (see Fig. 2). Both normalization and zero-mean

procedures are needed before applying PCA and ICA.

Fig. 4. PCA versus ICA. In this 2D plane, the principal components in

PCA are orthogonal and in order while the independent components in

ICA are not. PCA maximizes the variance while ICA aims at getting

independent projection.



�1 � �2 � � � � � �r. Let V ¼ diagð�1; �2; . . . ; �rÞ and E ¼
½e1; e2; . . . ; er�, where ei is the Eigenvector corresponding to
�i. The whitened data of F 00 are defined as

X ¼ V �1=2ETF 00; ð5Þ

where X is a r� n matrix and r � m� k.
After whitening, ICA projects the data point xi 2 IRr into

a data point yi 2 IRs as below:

yi ¼WTxi: ð6Þ

Here, to compare ICA and PCA under identical conditions,
the dimensionality of yi is also set to s (see (3)). A drawback
is that this may discard some useful information. One of our
future work is to exploit other techniques to estimate the
dimensionality of yi [32].

The goal is to find an optimal projection matrix W such
that yi are maximally independent, measured by some
function [30]. In general, an iterative process is employed to
search for W :

1. Choose a random initial matrix W ¼ ½w1; w2; . . . ; ws�,
where kwik ¼ 1.

2. For i ¼ 1 to s

wþi ¼
1

n

Xn
i¼1

xiðwTj xiÞ
3 � 3wj;

wi ¼ wþi =kwþi k:

Here, the first calculation is to ensure that the
iteration approaches the maximal independence and
the second one ensures that kwik ¼ 1.

3. W ¼WðWTW Þ�1=2, which is to ensure that wi 6¼ wj
when i 6¼ j.

4. If ð1� jwTi wijÞ < �, where � is a small constant, the
algorithm converges; Otherwise, go to step 2.

The convergence of FastICA is good [30]. In our
experiments, generally only a few iterations are needed,
and the total calculation time is less than 0.1 second.

3.3 Outlier Detection

The final step is to identify a subset of nodes that are
significantly dissimilar from the majority. In the field of
data mining, these nodes are called outliers. Simply put, an
outlier is a data point that is quite different from other data
according to some criteria [17]. In this paper, we measure
the dissimilarity between two data points ya 2 IRs and yb 2
IRs by using euclidean distance:

dðya; ybÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs
i¼1

ðya;i � yb;iÞ2
s

: ð7Þ

An object o is called a DBðp; dÞ outlier if at least p fraction
of the objects in the data set lies greater than d distance
away from o.

A straightforward algorithm to detect a DBðp; dÞ outlier
is to calculate the number of neighbors within the distance
of d from each object to determine whether it is an outlier or
not. This naive object-based algorithm has a complexity of
Oðsn2Þ, where s is the dimensionality and n is the number
of objects in the data set. Obviously, this is not efficient,
especially when there are a large number of nodes (e.g., tens

to hundreds of thousands) in the system. We adopt a cell-
based algorithm for outlier detection [17]. It has a complexity
of Oðcs þ nÞ, where c is a small constant. Note that after
feature extraction, s is quite small (e.g., in our experiments,
it is 3). Hence, it is more time efficient, as compared to a
naive outlier detection algorithm.

The cell-based algorithm works as follows. We first
partition the data space that holds Y ¼ fy1; y2; . . . ; yng into
cells of length l ¼ d

2
ffiffi
s
p (see Fig. 5). Each cell is surrounded

by two layers: 1) the first layer L1 includes those immediate
neighbors and 2) the second layer L2 includes those
additional cells within three cells of distance. For simplicity
of discussion, let M be the maximum number of objects
within the d-neighborhood of an outlier (i.e., within a
distance of d). According to the outlier definition, the
fraction p is the minimum fraction of objects in the data set
that must be outside the d-neighborhood of an outlier.
Hence, M ¼ nð1� pÞ. The cell-based algorithm aims to
quickly identify a large number of outliers and nonoutliers
according to three properties, in the order as listed below:

1. If there are >M objects in one cell, none of the objects
in this cell is an outlier.

2. If there are >M objects in one cell plus the L1 layer,
none of the objects in this cell is an outlier.

3. If there are �M objects in one cell plus the L1 layer
and the L2 layer, every object in this cell is an outlier.

These properties are used in the order to determine outliers
and nonoutliers on a cell by cell basis rather than on an object
by object basis. For cells not satisfying any of the properties,
we have to resort to object by object processing. As analyzed in
[17], this optimized algorithm can significantly reduce
execution time to a complexity that is linear with respect to n.

The above detection algorithm will separate the data set
Y into two subsets: normal data set Yn and abnormal data
set Ya. For each yi, we calculate its anomaly score:

�i ¼
0; yi 2 Yn;
dðyi; �Þ; yi 2 Ya;

�
ð8Þ

where � is the nearest point belonging to the normal data
set Yn. Anomaly score indicates the severity of anomaly.
The abnormal subset, along with anomaly scores, will be
sent to system administrators for final validation.

4 EXPERIMENTS

We evaluate our prototype implementation on a production
system by manually injecting a variety of system faults.
While experimental evaluation with real faults would be
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Fig. 5. Cell-based outlier detection. The data space is partitioned into

cells of length l ¼ d
2
ffiffi
s
p . Each cell is surrounded by two layers: L1 (in the

light-gray area) and L2 (in the dark-gray area).



better, a major problem with this approach is that we do not

often have the luxury of allowing systems to run for many

days to see their behaviors. Further, it is not guaranteed that

the system will experience a variety of faults during the

experimental time. The generally accepted solution to this

problem is to inject the effects of faults in a system and

observe the behavior of the system under the injected faults

[54]. In our experiments, we are able to test the proposed

anomaly identification mechanism on dozens of fault effects

via fault injection.
We compare three types of identification mechanisms,

namely the one using ICA-based feature extraction, the one

using PCA-based feature extraction, and the one without

using any feature extraction. In the rest of the paper, we

simply use the terms ICA-based, PCA-based, and No-

Extraction to denote these mechanisms.

4.1 Testbed

We use the IA64 Linux cluster called Mecury at NCSA as our

testbed, which is part of the TeraGrid infrastructure [1]. It

consists of 887 IBM nodes: 256 nodes with dual 1.3 GHz Intel

Itanium 2 processors and 631 nodes with dual 1.5 GHz Intel

Itanium 2 processors, all connected by Myrinet interconnect

network. The cluster is running SuSE Linux.
Our experiments are conducted on 256 1.5 GHz nodes. A

parameter sweep application is submitted on these nodes,

where application processes solve dense linear equations by

using Gaussian Elimination method, thereby performing

comparable computation tasks [42].

4.2 Fault Injection

We randomly inject faults into the testbed by generating

faulty threads in the background—separating from the

application threads, and test whether different mechanisms

can effectively identify the faulty nodes. Three random

factors are considered in our fault injection. First is to decide

how many nodes to inject faults, second is to determine

which nodes to inject faults, and the last is to decide the

type(s) of fault(s) to inject. In our experiments, 0-20 nodes

are randomly selected for fault injection. The inclusion of the

zero cases is to test our anomaly identification mechanism

under a fault-free environment. Totally, five types of faults

are tested as follows:

. Memory leaking: On randomly selected nodes, be-
sides the normal computation threads, we introduce
threads to generate memory leaking on the nodes,
meaning that these threads continue consuming
memory without releasing it periodically.

. Unterminated CPU-intensive threads: On randomly
selected nodes, the injected threads compete for the
CPU resource with the normal computation threads
on the nodes.

. Frequent I/O operations: On randomly selected nodes,
we introduce extra I/O intensive threads, which
keep reading and writing a large number of bytes
from local disks.

. Network volume overflow: On randomly selected
nodes, additional threads are introduced to keep
transferring a large number of packets among them.

. Deadlock: On randomly selected nodes, the injected
threads block application processes from system
resources.

We select these faults based on the literature and our
own experience on system log analysis [44], [45], [46]. For
example, we have found that some job hang failures are
triggered by deadlock, some network-related failures like
packet loss are caused by heavy traffic volume, and some
node map file failures are due to frequent IO operations. In
our experiments, these faults are supposed to originate
from the system rather than from the application. They can
affect multiple subsystems in a node, including memory,
CPU, I/O, and network, and may eventually lead to system
failure and/or performance degradation.

4.3 Collected Features

Totally, we collect 19 features per node. At the operating
system layer, we use four system commands, namely vmstat,
mpstat, iostat, and netstat, to collect node-level features from
CPU, memory, I/O, and network. We also use mpstat to
collect CPU-level features to distinguish dual CPUs per node.
Further, we collect two application-level features by using
MPI profiling interface (PMPI). PMPI allows us to obtain
application-level features without modifying user codes [5].
These features are summarized in Table 1.

4.4 Evaluation Metrics

The goal of anomaly identification is to separate the nodes
into two classes: those that contain faults (i.e., anomalies)
and those that do not. Sensitivity and specificity are two
widely used metrics to measure a binary classification test.
Sensitivity measures the proportion of actual positives, which
are correctly identified, and specificity measures the propor-
tion of negatives, which are correctly identified. More
specifically, they are defined as follows:

1. Sensitivity is the proportion of correct faulty classi-
fications to the number of actual faulty nodes
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sensitivity ¼ TP
TP þ FN

: ð9Þ

2. Specificity is the proportion of correct nonfaulty
classifications to the number of actual normal nodes

specificity ¼ TN
FP þ TN

: ð10Þ

Here, TP ; FP ; FN , and TN denote the number of true
positives, false positives, false negatives, and true nega-
tives, respectively. Fig. 6 illustrates the relationships among
these terms.

A good mechanism should provide a high value (close to
1.0) for both metrics. A sensitivity of 1.0 means that the
mechanism recognizes all the faulty nodes and a specificity
of 1.0 means that the mechanism identifies all the nonfaulty
nodes. High sensitivity is expected to avoid the cases, where
humans have to reprocess all the data to find out those
missed anomalies. In essence, it determines whether the
proposed automated mechanism is useful in practice. Low
specificity should be avoided as it leads to nontrivial human
effort to remove false alarms via manual processing. Our
goal is to obtain extremely high sensitivity (very close to 1.0)
and high specificity (better above 0.9).

4.5 Parameter Setting

Choosing optimal values for parameters is difficult in
practice, and often experimental determination might be the
only viable option.

In our experiments, we collect features every 40 seconds
and 5 samples per node. As a result, the feature matrix F
presented in Fig. 3 is of the size ð19� 5Þ � 256. In general,
sampling frequency is dependent on monitoring tools and an
understanding of fault modes. For example, the default
monitoring frequency used by Ganglia is 300 seconds,
whereas Supermon is capable of providing up to 6,000 sam-
ples per second. A high sampling frequency usually im-
proves analysis accuracy at the expense of introducing more
computation overhead. We choose these parameters based on
a study of several commonly used monitoring tools and our
understanding of the injected fault effects. We have tried
different sampling frequencies, from a low value (e.g., every
300 seconds) to a high value (e.g., every 10 seconds). In the
cases where the frequency is lower, we could end up with
insufficient sampling data for automated analysis. On the
other hand, in the cases where the frequency is higher like

every 10 seconds, the analysis accuracy remains similar,
while the computation overhead is increased by 38 percent.

Then, the threshold TH used in (3) is set to 0.80, which
results in three principal components. The number of
independent components is also set to 3 for the purpose
of fair comparison. As a result, data reduction achieved by
both PCA and ICA is over 96 percent. We have also tested
with different values for TH and the resulting number of
principal components does not change dramatically.

Finally, for outlier detection, the parameters p and d are
set to 0.9 and variance of Y (i.e., the newly constructed data
space after applying feature extraction), respectively.
According to the definition of p described in Section 3.3, p
should be set to the maximal fraction of possible faulty
nodes in a system. Based on our experiences on system logs
[44], [45], [46], we have found that the percentage of faulty
nodes is generally lower than 10 percent. As a result, we set
p to 0.9. A higher value of p typically results in better
sensitivity, whereas specificity could be lower.

4.6 Results

We conduct two sets of experiments: 1) single-fault tests,
where one type of faults are injected into the system and
2) multifault tests, where multiple types of faults are
injected into the system. For each experiment, we conduct
multiple runs (i.e., 4-10) and the results shown here are
the average of multiple runs.

4.6.1 Single-Fault Tests

Table 2 lists accuracy results for the first set of experiments,
i.e., single-fault tests. In the experiment, we inject one type
of faults onto 0-20 randomly selected nodes and assess
whether different mechanisms can correctly identify these
nodes. Fig. 7 pictorially shows the results achieved by PCA-
and ICA-based mechanisms. On each plot, the X, Y, and Z-
axis represent the 1st, 2nd, and 3rd principal or indepen-
dent components, respectively. The points in the ellipses
are true outliers, those in the rectangles are false outliers,
and those in the triangle are missed outliers.

First, we can see that without feature extraction, the
results, especially specificity, are much lower than the
cases using feature extraction. This indicates that in
addition to reducing data size, feature extraction can also
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Fig. 6. Evaluation metrics. Sensitivity is the proportion of correct faulty

classifications to the number of actual faults, i.e., opposite to missed

rate; specificity is the proportion of correct nonfaulty classifications to the

number of actual normal nodes, i.e., opposite of false alarm rate.

TABLE 2
Accuracy Results In Case of Single-Fault Tests There are

Two Numbers in Each Cell: The First is sensitivity
and the Second is specificity

A value of 1:00=1:00 indicates a perfect result. The results indicate that
both ICA and PCA-based mechanisms are good candidates for
automated anomaly identification, in case of single-fault scenarios.
The results also demonstrate that no-extraction is not effective due to its
low specificity.



improve accuracy. As mentioned before, we collect node

features during regular system operation. Thus, noise and

fluctuation are unavoidable in the collected features,

which can lead to false identifications. Feature extraction

can reduce these negative effects by keeping the most

useful characteristics in the features. Further, in the new

data space, feature extraction also amplifies the difference

between normal and abnormal behaviors, thereby de-

creasing the possibility of identifying normal nodes as

anomalies.

LAN ET AL.: TOWARD AUTOMATED ANOMALY IDENTIFICATION IN LARGE-SCALE SYSTEMS 181

Fig. 7. Single-fault test results by using ICA and PCA-based mechanisms. The ones in the ellipses are true outliers, those in the rectangles are false
outliers, and those in the triangle are missed outliers. While both mechanisms are good for anomaly identification in case of a single type of faults,
ICA-defined subspaces can better separate abnormal nodes from normal nodes as compared to PCA-defined subspaces. (a) Memory, (b) CPU,
(c) IO, (d) network, (d) deadlock.



Next, it is clear that ICA-based mechanism provides the
best results in terms of both sensitivity and specificity. By
examining the key difference between ICA and PCA, we
believe that the benefits of ICA come from two aspects.
First, much of the information that perceptually charac-
terizes node behaviors is contained in the higher order
statistics of the data. Distinguished from PCA that only uses
the second order statistics for feature extraction, ICA
explores higher order statistics of the data, thereby out-
performing PCA. Second, as we can observe in Fig. 7, ICA
uses a different subspace than PCA. Since ICA allows the
basis vectors to be nonorthogonal, the angles and distances
between data points differ in the subspaces generated by
ICA and PCA. Clearly, ICA can better separate abnormal
groups from normal groups by grasping the normal points
much closer to each other than PCA. This implies that ICA-
defined subspaces encode more information about node
behaviors than PCA-defined subspaces.

Last but not least, we also observe that detecting
network-related faults has the lowest accuracy, followed
by IO-related faults. For example, when using ICA-based
mechanism, the values of specificity are 0.93, lower than the
average value of 0.948; when using PCA-based mechanism,
the accuracy results are ð0:89; 0:86Þ and ð1:00; 0:92Þ for
network-related and IO-related faults, respectively; when
using no-extraction mechanism, the values of specificity are
lower than 0.80. We attribute this to the fact that network-
and IO-related faults can easily propagate throughout the
system [7], [28]. Due to fault propagation, neighboring
nodes may get infected, and as a result, the outlier list
generated by anomaly identification mechanisms may be
larger than the actual anomaly list. One solution to address
this problem is to involve human in the loop as shown in
Fig. 1. Further, we notice that ICA is better at capturing
these faults than PCA (see Figs. 7c and 7d). Unlike PCA,
ICA is capable of substantially separating the normal nodes
away from the real faulty nodes and infected nodes, thereby
resulting in a perfect sensitivity.

Since our goal is to obtain extremely high sensitivity and
high specificity, we conclude that, in case of single-fault
scenarios, both ICA and PCA-based mechanisms are good
candidates for automated anomaly identification, whereas
no-extraction mechanism can introduce nontrivial false
alarms as the average specificity is only about 0.796.

ICA and PCA apply different ways to transform the
original data space, both with the goal to better separate data
points. As we can see, both mechanisms approach the goal by
achieving comparable results, except for the faults that tend
to propagate throughout the system. As we will see in the
second experiment, this is no longer a case when multiple
faults exist in the system.

4.6.2 Multifault Tests

In this set of experiments, different types of faults are
simultaneously injected onto 0-20 nodes in the system. The
results for two-fault tests are listed in Table 3. We have also
conducted experiments with three and four types of faults.
The results are very similar to those shown in the table, so
we omit them here. Meanwhile, Fig. 8 pictorially shows
some two-fault results achieved by PCA and ICA-based
mechanisms. Again, on each plot, the X, Y, and Z-axis
represent the 1st, 2nd, and 3rd principal or independent

components, respectively. The points in the ellipses are true
outliers, those in the rectangles are false outliers, and those
in the triangles are missed outliers.

Consistent with the results shown in Table 2, without
feature extraction (i.e., no-extraction), specificity is low. This
demonstrates that for both single-fault and multifault tests,
feature extraction is indispensable as it can not only reduce
data size but also improve specificity. Low specificity means
that there are nontrivial amount of false alarms. False
identifications can be caused by noise in the original data or
by the closeness of data points in the original space. Feature
extraction is capable of reducing noise effects by keeping
the most relevant information in the data and distinguish-
ing groups by amplifying the difference between normal
and abnormal behaviors.

ICA-based mechanism produces the best results by
detecting every anomalous nodes, with the average
specificity above 0.94. The results are also consistent with
those shown in the single-fault tests. As shown in Fig. 8,
ICA can effectively define a basis set of statistically
independent axes, where data points in the ICA-defined
subspaces are better separated. The majority of data points
join together as a cluster, which represent normal nodes.
The points that are substantially away from the major
cluster are true outliers (i.e., in the ellipses). On each plot,
there are several data points close to the major cluster,
indicating false outliers.

A very interesting observation is that PCA does not
work well when multiple types of faults occur simulta-
neously. According to the data of the table, in 6 out of
10 tests, the values of sensitivity are lower than 0.60,
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TABLE 3
Accuracy Results In Case of Multifault Tests There are

Two Numbers in Each Cell: The First is sensitivity
and the Second is specificity

The results demonstrate that PCA-based mechanism is not effective in
identifying multiple simultaneous faults and ICA-based mechanism
outperforms PCA-based mechanism in terms of both sensitivity
and specificity.



meaning that more than 40 percent of anomalies are
missed by using PCA. The extreme case is when IO-related
faults and network-related faults coexist in the system for
which sensitivity is only at 0.25. In single-fault tests, we
mentioned that network- and IO-related faults are difficult
to detect due to their easy propagation characteristics. PCA
produces a terrible result when a mixture of these faults
occurs in the system. We attribute this to the nature of

PCA: PCA focuses on finding the directions of maximal
variance by using the second order statistic. As a result, in
case of multiple faults, PCA chooses the basis vectors that
pertain to one “strong” fault and ignores the information
that is relevant to other faults. Hence, PCA is not effective
in identifying simultaneous faults of different types.

Both single-fault and multifault tests have shown that
ICA outperforms PCA. The main reason is that ICA is
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Fig. 8. Multifault test results by using ICA- and PCA-based mechanisms. The ones in the ellipses are true outliers, those in the rectangles are false

outliers, and those in the triangles are missed outliers. PCA does not work well when multiple types of faults occur simultaneously. (a) Memory-

deadlock, (b) memory-CPU, (c) CPU-network, (d) IO-deadlock, (e) IO-network.



designed to maximize independence by using higher order
statistics in the data, whereas PCA focuses on maximized
variance by using the second order statistics in the data. As
a result, ICA is more robust to noise and its defined
subspaces can effectively encode more information of node
behaviors than PCA-defined subspaces. It also indicates
that second-order statistic is not sufficient to describe the
behavior of faulty nodes. As a result, PCA is not effective in
detecting faults that are easily propagated throughout the
system. Also, it should not be adopted when there are
multiple faults coexisting in the system.

4.6.3 Computation Overhead

Both PCA and ICA-based mechanisms are time efficient. In
our experiments, both take less than 0.25 second to produce
an anomaly list, which makes them feasible for practical
usage. As stated before in Section 3.2, this is due to the fact that
we only need to calculate a few Eigenvectors and Eigenvalues
by using PCA and FastICA (usually converges in less than
40 iterations).

In summary, our experiments have shown that:

. Feature extraction can substantially improve specifi-
city by reducing false identifications.

. Both PCA and ICA-based mechanisms are time
efficient, e.g., taking less than 0.25 second to process
voluminous amount of noisy, high-dimensional data
in our experiments.

. PCA-based mechanism works well for some faults;
however, it is inefficient when there are multiple
types of faults coexisting in the systems or when
faults have strong propagation characteristics.

. ICA-based mechanism is a promising approach for
automated anomaly identification in large-scale sys-
tems. It can effectively identify a variety of faults by
capturing every fault injected (i.e., sensitivity is always
at 1.0), with the false alarm rate less than 8 percent (i.e.,
specificity is always above 0.92). This will guarantee
that little amount of human effort is needed for final
validation.

5 DISCUSSIONS

This study has presented a general framework for node-
level anomaly identification. In particular, it has compared
two techniques, namely PCA and ICA, for feature extrac-
tion. Our results have demonstrated that ICA-based
mechanism always outperforms PCA-based mechanism.
The limitation of PCA is derived from its assumptions. First
is its assumption on the statistical importance of mean and
covariance. It only uses the second order statistics for
the derivation of basis vectors and the basis vectors have to
be orthogonal and in order. It does not guarantee that the
directions of maximal variance will contain good features
for discrimination. Second is due to its assumption that
large variances have important dynamics. It is only effective
when the observed data have a high signal-to-noise ratio
such that the principal components with larger variance
correspond to interesting dynamics and lower ones corre-
spond to noise. Our studies have shown that feature data
collected for troubleshooting are noisy, thus, PCA-based

mechanism is not effective in detecting some faults. ICA
overcomes these limitations by using a different way to
construct the basis vectors.

The anomaly identification framework presented in Fig. 1
is general and extensible as it works with various data
sources as long as the data can well capture node behaviors.
As defined in Section 1, this study emphasizes the
identification of anomalies, where anomalies are the nodes
in error or failed states and they may be caused by system
faults in hardware or software. In case that we are finding
the nodes in error states, meaning that the nodes are not
failed yet, the presented framework can be used as a failure
prediction support. Otherwise, if the nodes are already in the
failed states, then the presented framework can be con-
sidered as a failure diagnosis support.

Similar to other automatic approaches, our mechanism is
also subjected to some errors. For example, the ICA-based
approach may result in a false alarm rate by up to 8 percent.
False alarms may be caused by background noise or fault
propagation. We believe that a promising way to address
this issue is to involve the human in data analysis, which is
exactly what we propose in Fig. 1. The anomaly list
produced by our mechanism can be sent to system
administrators for further investigation. Other research
projects have also pointed out the importance of keeping
the human in failure analysis [48].

Our mechanism relies on the assumption that nodes in
the same group should exhibit similar behaviors. This can
be achieved by the use of dynamic grouping. While this
study focuses on homogeneous collection of nodes, in order
to be of systemwide use, our mechanism needs to interact
with resource management and job scheduling tools to
properly divide system resources into different groups. For
instance, the nodes performing comparable activities, e.g., a
set of dedicated IO nodes or a set of compute nodes
allocated to the same parameter sweep application, can be
grouped together. Further, the nodes allocated to parallel
applications can also be divided into different groups by
examining the call stacks during process initialization stage
[55]. In other words, the master nodes and worker nodes
may be allocated into different groups. How to effectively
integrate with resource management and job scheduling
tools is one of our ongoing efforts. In addition, our
mechanism does not work when a fault occurs across the
entire system. Fortunately, this kind of faults can easily be
detected via existing technologies.

Our study has some limitations that remain as our future
work. First, in our current design, the number of indepen-
dent axes in ICA is set based on a criterion used by PCA,
which may discard some useful information in the data.
This could be addressed by exploiting techniques like the
one presented in [32]. Second, the presented framework can
be extended by tracing the change of outliers and this could
address the fault propagation issue in large-scale systems.
Finally, in our experiments, we have mainly collected
performance data from the operating system for construct-
ing feature matrix. An interesting direction is to investigate
how to include other data sources for anomaly identifica-
tion. As an example, how to transfer system events into our
feature space is worthwhile to explore.
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6 RELATED WORK

For large-scale systems, a key challenge facing by their
system operators is to understand failure trends and modes.
Over the past, numerous studies have been conducted on
diagnosing and/or predicting failures based on system
events. Broadly speaking, we can classify existing ap-
proaches into two groups: model-based and data-driven. A
model-based approach derives a probabilistic or analytical
model of the system. A warning is triggered when a deviation
from the model is detected [43]. Examples include an
adaptive statistical data fitting method called MSET pre-
sented in [47], naive Bayesian-based models for disk failure
prediction [23], and Semi-Markov reward models described
in [49]. In large-scale systems, errors may propagate from one
component to other components, thereby making it difficult
to identify root causes of the problem(s). A common solution
is to develop fault propagation models (FPMs), such as
causality graphs or dependency graphs [4]. Generating
dependency graphs, however, requires a priori knowledge
about the system structure and the dependencies among
different components, which is hard to obtain in large-scale
systems. The major limitation of model-based methods is the
difficulty of generating and maintaining an accurate model,
especially given the unprecedented size and complexity of
large-scale systems.

Recently, data mining and statistical learning theory
(SLT) have received growing attention for failure diagnosis
and prognosis. These methods extract fault patterns from
system normal behaviors and detect abnormal observations
based on the learned knowledge without assuming a priori
model ahead of time [37]. For example, the group at the
Berkeley RAD laboratory has applied statistical learning
techniques for failure diagnosis in Internet services [2], [12].
The Statistical Learning, Inference, and Control (SLIC)
project at HP has explored similar techniques for automat-
ing fault management of IT systems [50]. In [10], [13], the
authors have presented several methods to predict failure
events in IBM clusters. Liang et al. [8], [34] have examined
several statistical-based methods for failure prediction in
IBM Blue Gene/L systems. Fu and Xu have developed a
framework called hPREFECTS for failure prediction in
networked computing systems [3]. In our own studies [44],
[45], we have investigated meta-learning-based method for
improving failure prediction by adaptively combining
various data mining techniques. Other representative
studies include system log analysis [14], [27] and fault
detection in syslogs [33].

While our approach belongs to the data-driven category
(i.e., making decisions by gathering and analyzing large
amounts of data), it focuses more on building a systematic
framework for automated anomaly identification in large-
scale systems. In addition, this study demonstrates that ICA
is a promising candidate for anomaly identification in large-
scale systems.

Most studies on failure diagnosis determine system
errors by examining historical data, which we denote as
being based on a vertical view of the system. They are often
characterized by the requirement of training a classifier on
samples of both normal and abnormal data. The funda-
mental problem with this approach is that it limits us to the
detection and localization of faults with known signatures.
Distinguished from this approach, our mechanism exploits

a horizontal view of the system for anomaly identification. It
does not require training on good samples, thereby being
capable of finding anomalies not yet seen in the data. Like
the work of Stearley and Oliner [33], our mechanism is also
based on the observation that system nodes performing
similar activities should exhibit similar behaviors. How-
ever, unlike [33], which uses the encoding of word position
in syslogs for fault detection, our work employs feature
extraction to reduce data dimensionality and outlier
detection to automatically determine the nodes that are
significantly different from the majority.

Our mechanism can also aid failure prediction. Unlike
failure diagnosis, which focuses on detecting and localizing
failures, failure prediction emphasizes on forecasting
occurrences of system failures. Earlier studies have shown
that it is possible to predict some failures by analyzing
reliability, availability, and serviceability (RAS) logs col-
lected and archived in systems [8], [10], [44], [45]. However,
due to the lack of information in RAS logs, most often the
prediction is on the level of system, meaning that we may
predict when the system will likely experience some failure,
but unable to tell where. A possible solution is to archive
system performance data in addition to RAS logs. Existing
predictive methods such as those presented in [8], [10], [45]
are used on the RAS events to predict when the underlying
system will experience a critical event (e.g., a hardware or
software failure) and this work can be utilized to determine
the potential localizations of the problem by analyzing
performance data.

Our work is inspired by the work of Lakhina et al. [25],
which explores PCA to diagnose network-wide traffic
anomalies. This paper is fundamentally different from that
presented in [25] in three key aspects. First, we target
identifying faulty nodes in large-scale systems such as
those used for high-performance computing [1]. In doing
so, our feature space is quite different from the one used
in [25]. Second, they apply classification techniques (i.e., a
supervised learning) to identify network anomalies, while
we investigate the use of an optimized outlier detection
method (i.e., an unsupervised learning) to find out
outliers. Finally, we have demonstrated through experi-
ments that ICA outperforms PCA for anomaly identifica-
tion in large-scale systems.

PCA is a well-known method for feature extraction and
has been applied in many fields [16], such as problem
diagnosis [25] and application classification [26]. However,
as pointed out in our experiments, PCA has several
limitations. In particular, it cannot distinguish a mixture of
multiple types of faults and does not work well with the
faults that are easily propagated across the system. There has
been a growing wave of papers on ICA and its algorithms
since the mid-1990s [31]. To date, ICA has been used for
signal processing, face recognition, industrial processing,
chemical engineering, and biomedical engineering [30], [32],
[51], [52], [53]. To the best of our knowledge, we are among
the first to explore ICA for anomaly identification in high-
performance computing systems.

There are a number of other feature extraction techni-
ques, such as linear discriminant analysis (LDA) [16] and
nonnegative matrix factorization (NMF) [57]. These meth-
ods either are based on supervised learning or have a low
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computation convergence, thereby not being examined in
this work. Both ICA and PCA are linear extraction methods.
Recently, some nonlinear methods have been proposed to
address the issues in linear methods like kernel methods
[58] and multidimensional scaling (MDS) [56]. The inves-
tigation of these nonlinear methods remains as one of our
future work.

7 CONCLUSION

In this paper, we have presented an automated mechanism
for anomaly identification in large-scale systems. It applies
three interrelated techniques to dynamically get the
anomaly lists. Our experiments on a production system
via manually fault injection have demonstrated that ICA-
based mechanism can provide high accuracy by effectively
discovering a variety of faults, with perfect sensitivity and
extremely high specificity. This indicates that ICA has a great
potential for anomaly identification in large-scale systems.
It is one of our goals that this work will open up a new
research direction in using ICA for anomaly detection and
localization in large-scale systems.
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