
Improving Batch Scheduling on Blue Gene/Q
by Relaxing Network Allocation Constraints

Zhou Zhou, Xu Yang, Student Member, IEEE, Zhiling Lan, Paul Rich,

Wei Tang, Vitali Morozov, and Narayan Desai

Abstract—As systems scale toward exascale, many resources will become increasingly constrained. While some of these resources

have historically been explicitly allocated, many—such as network bandwidth, I/O bandwidth, or power—have not. As systems continue

to evolve, we expect many such resources to become explicitly managed. This change will pose critical challenges to resource

management and job scheduling. In this paper, we explore the potential of relaxing network allocation constraints for Blue Gene

systems. Our objective is to improve the batch scheduling performance, where the partition-based interconnect architecture provides a

unique opportunity to explicitly allocate network resources to jobs. This paper makes three major contributions. The first is substantial

benchmarking of parallel applications, focusing on assessing application sensitivity to communication bandwidth at large scale. The

second is three new scheduling schemes using relaxed network allocation and targeted at balancing individual job performance with

overall system performance. The third is a comparative study of our scheduling schemes versus the existing scheduler on Mira, a 48-

rack Blue Gene/Q system at Argonne National Laboratory. Specifically, we use job traces collected from this production system.

Index Terms—Job scheduling, resource management, network partition, torus/mesh topology

Ç

1 INTRODUCTION

THE demand for more computing power seems insatiable,
which continues to drive the deployment of ever-grow-

ing supercomputers. Production systems already contain
hundreds of thousands of processors and are headed to mil-
lions [1]. These systems are used to tackle scientific problems
of increasing size and complexity, with diverse requirements
for resources. The cost to build and maintain such systems
can be significant. For example, the K Computer in Japan
cost more than $1 billion to build and $10 million to operate
each year. Therefore, a significant number of shared resour-
ces such as the communication infrastructure are utilized to
achieve high performance while controlling costs. However,
it is difficult to efficiently manage these shared resources.
With plans under way to achieve exascale computing within
the next few decades, utilizing these shared resources is
becoming increasingly important.

In order to harness the full potential of extreme-scale sys-
tems, resource management or job scheduling (i.e., effectively
allocating available resources to applications) is of para-
mount importance. Modern resource management systems
focus primarily on effective use of job-dedicated resources

such as processors, memory, and accelerators. Because of a
variety of ever-growing trends in computer technology, the
ratio of CPU and memory to shared resources is decreasing.
In the near future, management of shared resources such as net-
work and bandwidth will become increasingly critical.

Torus-based networks are prevalent in high-end super-
computers because of their linear scaling on per-node cost
as well as their competitive communication performance.
The IBM Blue Gene/L (BG/L) [2], Blue Gene/P (BG/P) [3],
[2], [4], [5], and Cray XT systems [6] use a 3D torus network
for communication. The Blue Gene/Q (BG/Q) system has
its nodes electrically interconnected in a 5D torus network
[7], [8]. The K computer from Japan uses the “Tofu” system,
which is a 6D mesh/torus topology [9]. On the recent Top
500 list, 6 of the top 10 supercomputers use a high-radix
torus-interconnected network [1]. Traditionally, these sys-
tems use a single torus network, which could impact appli-
cation performance because of network sharing (e.g., job
interference and communication contention). In order to
address this issue, Blue Gene systems [3], [2] use a network
partitioning mechanism in which the network interconnect
is reconfigured to provide private, per-job networks to com-
pute nodes [10], [11]. In such a way, the whole torus net-
work can be partitioned into multiple smaller tori in a
limited number of ways [12]. Once a network partition is
established, the job running on the partition can benefit
from the dedicated synchronization network where all
required hardware is dedicated to the job.

Although a partition-based systemprovides jobswith ded-
icated network resources and bandwidth, the use of partitions
introduces a new problem: resource contention caused by
exclusively allocating shared network resources to a single
job [13]. When partitioning the system into schedulable par-
titions on a BG/Q system, some block wiring adjustments
should be made beyond the overall geometry of the selected

� Z. Zhou, X. Yang, and Z. Lan are with the Department of Computer Sci-
ence, Illinois Institute of Technology, Chicago, IL 60616.
E-mail: {zzhou1, xyang56}@hawk.iit.edu, lan@iit.edu.

� P. Rich and V. Morozov are with the Argonne Leadership Computing
Facility, Argonne National Laboratory, Lemont, IL 60439.
E-mail: richp@alcf.anl.gov, morozov@anl.gov.

� N. Desai is with the Ericsson Inc, San Jose, CA 95134.
E-mail: narayan.desai@ericsson.com.

� W. Tang is with the Google Inc, New York, NY 10018.
E-mail: weitang@google.com.

Manuscript received 22 Sept. 2015; revised 12 Jan. 2016; accepted 27 Jan.
2016. Date of publication 11 Feb. 2016; date of current version 12 Oct. 2016.
Recommended for acceptance by R. Brightwell.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2528247

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016 3269

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

nodes on the system. This operation is critical and must be
performed with great caution. A common case on the BG/Q
system is that a 1,024-node partition in a torus configuration
is always in contention for wiring resources with other parti-
tions around it. Such a contention can cause unusable configu-
rations of node resources and prevent other nodes from being
serviceable, regardless of node state. In other words, the hard-
ware serviceability may be affected by inappropriate configu-
rations which are prone to resource contention. For example,
even if some nodes are idle, they still cannot be grouped
together to serve a job because the wirings between them are
occupied by other jobs. This issue can deteriorate both job
response times and systemutilization.

Inspired by the partition-based design and the flexible
wiring control deployed on BG/Q, in this paper we exploit
the potential of utilizing these features to relax network
resource allocation, with the objective of improving job
scheduling. The partition-based design of BG/Q provides
a unique opportunity to explicitly allocate network resour-
ces (i.e., links or bandwidth) to jobs in a way that is impossi-
ble on other systems. When assigning wirings to carry
traffic among a partition’s nodes, the torus link to “wrap
around” the nodes network can by dynamically turned on
or omitted from the partition’s specification. While this
capability is currently rare, we expect it to become more
common. Unlike the conventional scheduling approach that
considers only the job’s requirement on processor and
memory for job allocation, our design also takes into
account the application’s communication features and treats
the wirings between nodes as schedulable resources.

More specifically, this paper makes three major
contributions:

1) Substantial benchmarking of applications, focusing
on assessing application sensitivity to network con-
figuration at large scale. In particular, we evaluate a
number of parallel benchmarks and DOE leadership
applications on the production system Mira at
Argonne by analyzing their performance variation
under different network configurations.

2) Design of three new scheduling schemes for BG/Q
machines. These schemes have different characteris-
tics, including network configurations and scheduling
policies. In particular, we propose a communication-
aware scheduling policy that selectively allocates net-
work resource to users’ jobs according to job commu-
nication characteristics.

3) Comprehensive evaluation of our scheduling
schemes, through trace-based simulations using real
workloads fromMira.

Our major findings are twofold:

1) Not all applications are sensitive to the network topol-
ogy change. An application’s performance under dif-
ferent network configurations depends mainly on its
communication patterns and the proportion of com-
munication over the total runtime.

2) Our new scheduling schemes can significantly
improve scheduling performance by up to 60 percent
in job response time and 17 percent in system
utilization.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces background about the BG/Q system Mira
at Argonne. Section 3 presents the results of benchmarking
applications on Mira. Section 4 describes our new batch
scheduling schemes. Section 5 presents a scheduling study.
Section 6 describes system partitioning. Section 7 discusses
related work. Section 8 summarizes our conclusions and
points out future work.

2 BACKGROUND

2.1 Mira: The IBM Blue Gene/Q System at Argonne

Mira is a 10 PFLOPS (peak) BG/Q system operated by
Argonne National Laboratory for the U.S. Department of
Energy [1]. It is a 48-rack system, arranged in three rows of
16 racks. Each rack contains 1;024 16-core nodes, and the
whole system has a total of 786;432 cores. Mira has a hierar-
chical structure: nodes are grouped into midplanes, each
midplane contains 512 nodes in a 4� 4� 4� 4� 2 struc-
ture, and each rack has two such midplanes. It was ranked
fifth in the latest Top500 list published in November 2015
[1]. Mira uses a 5D torus-connected network. These five
dimensions are referred to as the A,B,C,D,E dimensions.
Each node in the machine has a unique set of coordinates
on the full machine partition. Mira is a capability system,
with single jobs frequently occupying substantial fractions
of the system. The smallest production job on Mira occupies
512 nodes; 8,192-node and 16,384-node jobs are common on
the system; larger jobs also occur frequently. Jobs up to the
full size of Mira run without administrator assistance. Time
on Mira is awarded primarily through the Innovative and
Novel Computational Impact on theory and Experiment
(INCITE) program [14] and the ASCR Leadership Comput-
ing Challenge (ALCC) program [15].

2.2 Partitioning on Mira

Mira uses network partitioning for job scheduling. Parti-
tions can be constructed only in a limited set of ways. A par-
tition must be a uniform length in each of the dimensions.
Midplanes used to build partitions must be connected
through a single dimension and form a roughly rectangular
prism in five dimensions. Because the final dimension is
used only to connect nodes within a single midplane, all
partitions are length 1 in the E dimension. Additionally, the
creation of a partition uses network resources in a dedicated
fashion, preventing their use in other partitions. For a parti-
tion size to be valid, there must be a set of partition lengths
in each dimension that results in a properly sized 5D prism
of nodes. Partitions also require use of complete midplanes,
so all partitions on the system are multiples of 512 nodes.
For a given size, several partition variants may exist with
different shapes.

Fig. 1 illustrates the flat view of the network topology of
Mira with two halves and three rows. Each square labeled
with “RXX” represents a rack. Each rack contains two vertical
midplanes (not shown in the figure). Aswe can see, thewhole
machine is split into six 8-rack sections. Each node in Mira
has a unique logical coordinate ðA;B;C;D;EÞ. Given the log-
ical coordinate of a node, we can translate the logical address
of a node to the midplane location. The A coordinate decides
which half of the machine the node is on. The B coordinate

3270 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

decides which row of the machine the node is on. The C coor-
dinate refers to a set of four midplanes in two neighboring
racks. The blue lines represent the cables that link racks
together. Since the coordinate is based on a logical location
and follows the midplane cable, this coordinate appears to
jump around the 8-rack segment as illustrated in the figure.
TheD coordinate refers to a singlemidplane in two neighbor-
ing racks. Since the cable makes a loop around two racks, the
coordinate loops in a clockwise direction.OnMira, a partition
of the fixed size may have multiple geometry, which appears
to have different “shapes”. Typically, a more “compact” par-
tition can provide better network communication perfor-
mance than a relativelymore “loose” partition.

2.3 Network Resource Contention

One unique feature of the BG/Q architecture is the ability to
explicitly allocate network performance to jobs. When
building a partition, a shared pool of network resources is
allocated to a single partition at a time. If sufficient resour-
ces are dedicated to a partition, it will have a torus network.
Alternatively, if fewer resources are allocated, the partition
will have only a mesh network, in which the outside faces
of the mesh are not connected except where the internal
midplane faces connect to one another. The performance of
the torus partition is considerably better than that of the
mesh; the worst case and average hop counts between
nodes are reduced, and more bandwidth is available to
applications. This difference in performance will affect
application performance, particularly for communication-
intensive applications.

As we mentioned previously, a shared pool of resources
is used to connect single midplanes into larger partitions,
while midplanes include enough dedicated hardware to
produce a full torus network in all dimensions on a single-
midplane partition. Network contention is a substantial
challenge for resource allocation on BG/Q systems. For
example, it is possible that idle midplanes cannot be wired
together to satisfy a job’s resource request, because of a lack

of wiring resources, as shown in Fig. 2. This situation can
occur even when midplane positions meet all geometric
constraints for partition creation.

Partitions have a variable dependence on the shared pool
of network resources depending on their shape and the over-
all size of the full system. When a partition is only one mid-
plane long in a direction, no external wiring resources are
needed. In effect, with singlemidplane partitions, none of the
shared pool will be used, while the entire pool will be con-
sumed for a full systempartition. Both cases are simple to sat-
isfy from a paired allocation perspective, since no mismatch
occurs between the free midplanes and wiring resources.
Other partition sizes consume quantities of wiring resources
similar to those of the full system partition, while leaving

Fig. 1. Flat view of mira’s network topology.

Fig. 2. Wire contention between midplanes. The figure is a schematic
representation of a four-midplane-long dimension showing a two-
midplane torus and two single midplane tori. Because of the wiring of the
two-midplane torus (blue) and the exclusivity of partitioning on Mira, this
wiring prevents the formation of a torus or a mesh with the remaining two
midplanes in this dimension. As shown, once two midplanes (M0 and M1
in (a) and M1 and M2 in (b)) are linked together to form a 1K partition,
they will consume all the wire resources along this four-midplane-long
dimension. This is representative of both the C andD dimensions onMira.

ZHOU ETAL.: IMPROVING BATCH SCHEDULING ON BLUE GENE/Q BY RELAXING NETWORK ALLOCATION CONSTRAINTS 3271

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

other midplanes free. In this case, however, allocation of the
remaining free midplanes is constrained by the lack of wiring
resources. With this metric, some partition configurations
can be thought of asmonopolizingwiring resources.

2.4 Batch Scheduling on Partition-Based Systems

Batch scheduling on a partition-based system comprises two
parts: network configuration and scheduling policy. For network
configuration, Mira uses a configuration in which all parti-
tions are fully torus-connected. The partition size ranges from
512 nodes (single midplane) to the whole machine (48 racks).
The scheduling policy consists of two phases: job prioritiza-
tion and node allocation. The most commonly used priority
policies include FCFS (first-come-first-served) [16], [17], [18],
SJF (shortest-job-first) [19], and RR (round-robin) [20],
[21], [22]. Other techniques such as conservative backfill-
ing [23] and EASY backfilling [24], [25] were proposed to
improve the system utilization and have been adopted by
many production schedulers [16], [26]. On Mira, the resource
manager uses a priority policy called “WFP” to order the jobs
in the queue [27], [28]. The WFP policy favors large and old
jobs, adjusting their priorities based on the ratio of their wait
times to their requested runtimes, which was also suggested
in [29]. Upon each scheduling, the job at the head of the wait
queue is selected and allocated to a partition. Also the EASY
backfilling [24], [25] is used to make reservations, if possible,
for jobs arriving later. Next, a least-blocking (LB) scheme is
used to choose the partition that causes the minimum net-
work contention out of all candidates [28].

3 APPLICATION BENCHMARKING

To properly use these mesh- and contention-free partitions,
we need to understand how they can affect the application’s
performance. We first investigate the impact of partition
configuration on application performance. We choose four
parallel benchmarks and three DOE leadership applications
for benchmarking. The results will be used as a baseline for
experimental comparison in Section 5. To quantify perfor-
mance difference, we define

runtime slowdown ¼ Tmesh � Ttorus

Ttorus
; (1)

where Tmesh is the application runtime on a mesh partition
and Ttorus is the application runtime on a torus partition.

3.1 Parallel Benchmarks and Applications

In this paper, we use the NAS Parallel Benchmarks, in par-
ticular NPB3.3, which has a larger problem size (class E),
16X size increase from the previous largest class [30]. We
choose three kernel benchmarks: LU, FT, and MG. LU sol-
ves synthetic systems of nonlinear partial differential equa-
tions. FT solves a three-dimensional partial differential
equation using a fast Fourier transform (FFT). MG solves a
three-dimensional discrete Poisson equation using the V-
cycle multigrid method.

We also study four scientific applications: Nek5000,
FLASH, DNS3D, and LAMMPS. The applications are used
routinely by a number of INCITE projects.

Nek 5000 [31] is a spectral-element computational fluid
dynamics code developed at Argonne National Laboratory.

It features spectral-element multigrid solvers coupled with
a highly scalable, parallel coarse-grid solver. It was recog-
nized in 1999 with a Gordon Bell prize and is used by more
than two dozen research institutions worldwide for projects
including ocean current modeling, thermal hydraulics of
reactor cores, and spatiotemporal chaos.

FLASH 4.0 [32] is the lastest FLASH release from the
Advanced Simulation and Computation (ASC) Center at
the University of Chicago. The FLASH code [33] is a mul-
tiphysics simulation code written in Fortran90 and C
using MPI with OpenMP. The driven turbulence setup is
run using the split-PPM hydrodynamics solver and the
uniform grid module, in a weak-scaling mode. This prob-
lem was run at a large scale on the BG/L at Lawrence
Livermore National Laboratory [34] and is known to be
highly scalable.

DNS3D is a direct numerical simulation code that solves
viscous fluid dynamics equations in a periodic rectangular
3-D domain with a pseudo-spectral method of fourth-order
finite differences and with the standard Runge-Kutta
fourth-order time-stepping scheme [35]. DNS3D is written
in Fortran and is a pure MPI application. Similar to other
spectral codes, DNS3D can use either slabs or pencil domain
decompositions, depending on the type of Fourier trans-
forms executed. In both strategies, decomposition is not per-
formed in at least one of the coordinate directions. DNS3D
is highly dependent on network performance, since during
each time step it executes three Fourier transforms for three
3-D scalar variables. This approach can effectively be trans-
formed into all-to-all-type computations. Because of a rela-
tively low memory footprint per MPI rank, DNS3D runs
effectively using 64 MPI ranks per node on BG/Q; and com-
pared with other MPI-only codes, it shows a high per-node
performance on this machine.

LAMMPS (“Large-scale Atomic/Molecular Massively
Parallel Simulator”) [36] is a general-purpose molecular
dynamics software package for massively parallel com-
puters. Developed at Sandia National Laboratories, it is
written in an exceptionally clean style that makes it one of
the most popular codes for users to extend, and it currently
has dozens of user-developed extensions. LAMMPS was
trivially ported to BG/Q shortly after the first installations
came online, and it has run on the entire Mira system using
millions of MPI processes [37].

3.2 Partition Types

Here we discuss two traditional partition types: torus and
mesh. Then we introduce a new mechanism to achieve con-
tention-free partitioning.

3.2.1 Torus Partition

The most popular partition used on Mira has a five-
dimensional torus network topology. Besides having
direct links between the nearest neighbors in the A, B, C,
D, and E dimensions, a torus partition also has a wrap-
around link connecting the head and tail nodes in each
dimension. The torus partition can provide the best net-
work communication performance; however, it is also
the most “expensive” partition because it consumes extra
wrap-around links.

3272 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

3.2.2 Mesh Partition

A mesh partition can be built based on a torus partition by
turning off every wrap-around link in each dimension.
This type of mesh partition requires the least amount of
wiring resource compared with a full torus partition
of the same geometry. It does not cause any wiring con-
tention in any dimension, but the cost is the sacrifice of
network communication because of the doubled average
maximum hop count.

3.2.3 Contention-Free Partitions on Mira

Contention for wiring resources is a critical issue on Blue
Gene systems. The contention always takes place when a
partition has one or multiple dimensions of which the
length is larger than one. Fig. 2 shows the wiring connec-
tivity on the D dimension of a 1K torus partition (blue
rectangle). This 1K torus partition may cause potential
contention for wiring resources with other two midplanes
because its D dimension length is 2. Fortunately, the BG/
Q system has a more flexible mechanism for controlling
switches and wirings. Unlike the BG/P system with the
rigid restriction on wiring resources that all dimensions
must be configured as a torus or mesh, the BG/Q system
can independently control a partition’s wiring connectiv-
ity on each single dimension. Thus, on Mira we can build
new partitions configured with mixed torus and mesh
dimensions. We set contention-prone dimensions as
mesh-connected while still keeping other dimensions
as torus-connected. By building such partitions, we can
ensure that the wiring contention does not happen uni-
formly in all dimensions. In this paper, we call these
“contention-free” partitions. For example, as shown in
Fig. 3, we turn the D dimension of the 1K partition into a
mesh, while still having the other four dimensions torus-
connected. This contention-free 1K partition does not
consume any extra wiring resources compared with a
torus partition, and it can provide better communication
performance. Similarly to a full-mesh partition, this new
type of 1K partition also does not cause any wiring con-
tention on its torus-connected dimensions. On Mira, we
build such partitions with sizes 1, 4, and 32 K. Compared
with full-mesh partitions, these contention-free partitions
cause less performance degradation in application run-
time. The reason is that an application can still benefit
from the torus links in dimensions A, B, C, and E. Our
new scheduling schemes takes advantage of these conten-
tion-free partitions to improve scheduling performance.

Since we have three types of partitions—torus, mesh, and
contention-free—we conduct experiments on application
benchmarking separately. Because of the computing
resource availability, for torus versus mesh partition we run
these applications on the partitions of sizes 2, 4, and 8 K
nodes, and for torus versus contention-free partitions we
run these applications on the partitions of sizes 1 and 4 K.

3.3 Results of Torus versus Mesh Partitions

Table 1 presents application slowdowns of NPB bench-
marks on mesh partitions. Obviously, LU is not sensitive to
the switching from torus to mesh. It has less than 4 percent
slowdown at size 2 K and close to zero slowdown when the
computing scale is increased to 4 and 8 K. The algorithm of
LU is not highly parallelized, and most of its MPI routines
are blocking communication. This approach leads to no per-
formance loss when the network topology configuration is
changed from torus to mesh.

MG shows no slowdown at size 2 K. When the comput-
ing scale is increased, however, we observe a 12 percent
slowdown at size 4 K and nearly 20 percent slowdown at
size 8 K. MG has unique communication patterns. In partic-
ular, it involves both near-neighbor communication and
long-distance communication, so its performance is sensi-
tive to network topology changes.

FT also is sensitive to the network topology. At all three
sizes, its slowdown is more than 20 percent. The code per-
forms global data communication for its FFTs [38]. This is the
main reason that the performance drops significantly when
usingmesh partitionswith reduced bisection bandwidth.

The slowdown results of the leadership applications also
are presented in Table 1. For LAMMPS and Nek5000, the
use of mesh partitions has minimal impact on their perfor-
mance: the slowdowns are always less than 1 percent.

In Nek5000, every process is communicating to 50 to 300
geometrically neighbor processes, which in practice means
about 2 to 3 hops away from the source. For a torus, the pro-
cess on the “border” node does not notice any difference
because, in some sense, there are no borders in torus topology.
For amesh, the processwill have half the neighbors located in
the same semi-plane as in the torus partition, but half the
others will need to reuse the path of the semi-plane. The slow-
down really depends on the level ofmultigrid refinement and
the placement of the processes relative to each other.

In FLASH, the slowdown is no more than 5 percent on
the 4 and 8 K partition. FLASH’s runtime is dominated by
computation, not communication, and at the larger sizes
takes up on the order of 14 percent of the runtime. The rea-
son is that the communication algorithm is largely point to
point and generally fairly local. Because of the periodic
boundary conditions of the physics in the problem, we do
get a small but significant amount of off-node communica-
tion on the wrap-around links. For example, for 8 K parti-
tions, the torus spends only 14 percent of its time in
communication, whereas the mesh partition has communi-
cation for 17 percent of the runtime. We see a 23 percent

Fig. 3. Contention-free partition of 1K size.

TABLE 1
Application Runtime Slowdown on Mesh Partitions

Runtime Slowdown
Name

2 K 4 K 8 K

NPB:LU 3.25% 0.01% 0.03%
NPB:FT 22.44% 23.26% 21.69%
NPB:MG 0.00% 11.61% 19.77%
Nek5000 0.95% 0.02% 0.44%
FLASH 0.83% 5.48% 4.89%
DNS3D 39.10% 34.51% 31.29%
LAMMPS 0.02% 0.87% 0.97%

ZHOU ETAL.: IMPROVING BATCH SCHEDULING ON BLUE GENE/Q BY RELAXING NETWORK ALLOCATION CONSTRAINTS 3273

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

slowdown in communication, which translates into about 5
percent slowdown of runtime.

DNS3D exhibits substantial slowdown when switching
from a torus to a mesh partition. Among the three partition
sizes from 2 to 8 K, the slowdown is always above 30 per-
cent. In some cases (e.g., 2 K), the slowdown is close to 40
percent. Our MPI profiling shows that DNS3D spends 60
percent of its runtime in MPI_Alltoall(). MPI_Alltoall() is
scales proportion to the bisection bandwidth of a partition.
If one of the partition dimensions becomes a mesh, the
bisection bandwidth of the partition is reduced by half.
Therefore, it takes two times longer for MPI_Alltoall() to
complete. Hence, we observe a 30 percent performance deg-
radation here. Clearly, certain applications are sensitive to
communication bandwidth, especially those heavily using
MPI collective calls.

3.4 Results of Torus versus Contention-Free
Partitions

Table 2 presents the application runtime slowdown on
the contention-free partitions. Except FT and DNS3D, the
other benchmarks are almost unaffected by the switching
from torus to contention-free partitions. The largest slow-
down is even less than 2 percent on LU. The slowdown of
FT at both 1 and 4 K sizes is less than that in Table 1. For
DNS3D, the slowdown is still notable which is around 20
percent. However, compared with the slowdown in 1 which
is above 30 percent, the contention-free partition show its
advantage against the mesh.

In summary, our benchmarking results demonstrate that
the application’s communication pattern is a key factor influ-
encing application runtime under different network configu-
rations. Applications dominated by local communications
are not sensitive to the network topology changing from
torus to mesh, whereas applications having a substantial
amount of long-distance or global communications are prone
to performance loss when running onmesh partitions.

4 THREE NEW SCHEDULING SCHEMES USING

RELAXED ALLOCATION CONSTRAINTS

In this section we present three new scheduling schemes to
improve batch scheduling. While this work targets Mira,
these new scheduling designs are applicable to all BG/Q
systems and other 5D torus-connected systems. Using mesh
and contention-free partitions requires fewer links than full
torus partitions do. According to the benchmarking results

presented in Section 3, we can observe that for many
applications, the performance loss caused by mesh and
contention-free configurations is not substantial. Inspired
by the observation, we intend to relax resource allocation
constraints and improve system scheduling performance.

4.1 MeshSched

As shown in Fig. 4, we propose a mesh-based scheduling
policy that uses a full mesh network configuration. This
configuration is generated from the current one on Mira by
turning every torus partition into a mesh partition except
the 512-node partition, which must be a torus. Specifically,
wrap-around torus links are turned off in each dimension,
consequently reducing the potential link contention
between neighboring partitions. Resources can be more
freely allocated without the constraint of wrap-around
links. Obviously, runtime slowdown may occur for some
communication-intensive applications since mesh partitions
reduce the bisection bandwidth between two nodes.

4.2 Contention-Free and Communication-Aware
(CFCA)

On Mira, almost every partition can be configured to
a contention-free version except the 512-node single mid-
plane and the 48-rack whole machine. Given that possi-
bility, the job scheduler has many more options when
making scheduling decisions. Thus, using the contention-
free partitions, we propose a new scheduling scheme that
takes an application’s communication intensity into
account, as shown in Fig. 5. Compared with mesh parti-
tions, the new contention-free partitions can preserve
the application performance as much as possible without
causing resource contention. We build a new network
configuration on Mira by adding these contention-free
partitions to the current configuration on Mira. We
also develop a communication-aware scheduling policy,
as shown in Fig. 5. The new scheduling scheme allocates
communication-sensitive jobs to torus partitions and

TABLE 2
Application Runtime Slowdown on Contention-

Free Partitions

Name Runtime Slowdown

1K 4K
NPB:LU 1.63% 1.05%
NPB:FT 12.72% 11%
NPB:MG 1.20% 1%
Nek5000 1.00% 1%
FLASH 0.00% 0.05%
DNS3D 24.53% 18%
LAMMPS 0.02% 0%

Fig. 4. The MeshSched scheduling scheme.

Fig. 5. The CFCA scheduling scheme.

3274 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

allocates non-communication-sensitive jobs to contention-
free partitions. By doing so, this scheduler seeks to bal-
ance user requirements and system performance. Note
that the single 512-node midplane must always be a
torus. Any jobs requiring no more than 512 nodes should
directly be routed to a single midplane. Further, with
the performance monitoring support on Mira, an ap-
plication’s sensitivity to network topology can be deter-
mined empirically.

4.3 Hybrid

We also propose a new “hybrid” scheduling scheme that
can be treated as a combination ofMeshSched and CFCA. We
build a complete network configuration including torus
partitions and their corresponding mesh partitions, and all
contention-free partitions. As shown in Fig. 6, the schedul-
ing policy works in a way similar to that of CFCA. Commu-
nication-sensitive jobs are still routed to torus partitions,
and non-communication-sensitive jobs are preferentially
allocated to mesh partitions if any are available. Otherwise,
the most suitable contention-free partition is chosen to run
the job using the WFP policy. This scheduling scheme fully
utilizes the contention-free partitions to provide perfor-
mance comparable to that of the torus partition. Moreover,
it take advantages of the mesh partition to minimize the
resource contention.

5 EXPERIMENTS

In this section, we compare our new scheduling methods
under a variety of workloads using trace-based simulation.
The goal is to investigate the benefit of our design compared
with the current one used on Mira.

5.1 QSim Simulator

Qsim is an event-driven scheduling simulator for Cobalt,
the resource management and job scheduling package used
on the 48-rack Mira. Taking the historical job trace as input,
Qsim quickly replays the job scheduling and resource allo-
cation behavior and generates a new sequence of scheduling
events as an output log. Qsim uses the same scheduling and
resource allocation code that is used by Cobalt and thus will
provide accurate resource management and scheduling
simulation. Qsim is open source and available along with
the Cobalt code releases [27]. It was used in our previous
work [28], [40], [10].

5.2 Job Trace

We use a three-month workload trace collected from Mira.
Fig. 7 summarizes the jobs in these months. As we can see,
the 512-node, 1 K, and 4 K jobs are the majority. For months
2 and 3, 512-node jobs account for half of the jobs. While the
number of large-sized jobs (more than 8 K nodes) is rela-
tively low, these jobs consume a considerable amount of
node-hours because of their sizes.

5.3 Evaluation Metrics

Four metrics are used for scheduling evaluation:

� Average job wait time. This metric denotes the aver-
age time elapsed between the moment a job is
submitted and the moment it is allocated to run.
It is commonly used to reflect the “efficiency” of a
scheduling policy.

� Average response time. This metric denotes the aver-
age time elapsed between the moment a job is sub-
mitted and the moment it is completed. Similar to
the above metric, it is often used to measure schedul-
ing performance from the user’s perspective.

� System utilization. System utilization rate is measured
by the ratio of busy node-hours to the total node-
hours during a given period of time [40], [41]. The
utilization rate at the stabilized system status
(excluding warm-up and cool-down phases of a
workload) is an important metric of how well a sys-
tem is utilized.

� Loss of capacity (LoC.) LoC measures system fragmen-
tation [10]. A system incurs LoCwhen it has jobswait-
ing in the queue to execute and when it has sufficient
idle nodes but still cannot execute those waiting jobs
because of fragmentation. A scheduling event takes
place whenever a new job arrives or an executing job
terminates. Let us assume the system has N nodes
and m scheduling events, which occur when a new
job arrives or a running job terminates, indicated by
monotonically nondecreasing times ti, for i ¼ 1:::m.
Let ni be the number of nodes left idle between the
scheduling event i and iþ 1. Let di be 1 if any jobs are
waiting in the queue after scheduling event i and at
least one is smaller than the number of idle nodes ni,
and 0 otherwise. Then LoC is defined as follows:

LoC ¼
Pm�1

i¼1 niðtiþ1 � tiÞdi
N � ðtm � t1Þ : (2)

Fig. 6. The Hybrid scheduling scheme.

Fig. 7. Job size distribution.

ZHOU ETAL.: IMPROVING BATCH SCHEDULING ON BLUE GENE/Q BY RELAXING NETWORK ALLOCATION CONSTRAINTS 3275

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

5.4 Results

In our experiments we compare our new scheduling meth-
ods (termedMeshSched, CFCA, andHybrid) with the one cur-
rently used on Mira, namely, Native. Table 3 summarizes
these scheduling methods.

We categorize jobs into communication-sensitive and non-
communication-sensitive jobs. For each simulation, we set
five slowdown levels for applications running on mesh parti-
tions: 10, 20, 30, 40, and 50 percent. For example, slowdown of
10 percent means the runtime increases by 10 percent on
mesh partitions. We also tune the percentage of communica-
tion-sensitive jobs in the workload. Similarly, five ratios are
used: 10, 20, 30, 40, and 50 percent. We conduct experiments
using the workload on a monthly base (3 months). In total we
have 300 (3� 4� 5� 5) sets of experiments.

Because of space limitations, we present only a few rep-
resentative results. To improve the figure readability, we
present the results when the percentage of communication-
sensitive jobs is 10, 30, or 50 percent. For system utilization,
we present the relative improvement of MeshSched and
CFCA over Native.

Fig. 8 shows the scheduling performance when the
runtime slowdown is set to 10 percent. First, we observe
that the MeshSched, CFCA, and Hybrid schemes can have a
striking effect on job wait times and response times for all
three months. The largest wait time reduction is more
than 50 percent for month 1 when there are 10 percent
communication-sensitive jobs. With a relatively low slow-
down of 10 percent, using mesh partitions provides
shorter turnaround time with affordable performance
loss. The response time is also reduced substantially
because of the reduction in job wait time. The relative
improvement in job response time is smaller than that
achieved in job wait time. It indicates that for most jobs
their runtimes dominate the total response time. Second,
we notice that Hybrid outperforms both MeshSched and
CFCA regarding wait time and response time for all three
months. In month 1 and month 3, Hybrid can reduce more
than 10 percent wait time than can CFCA. The key to its
superiority in scheduling performance is that Hybrid
takes full advantage of MeshSched to reduce resource
contention and CFCA to guarantee the performance of
communication-sensitive jobs as well. Third, with respect
to LoC, all three scheduling schemes perform better

than Native does. For month 1, LoC decreases more than
10 percent when there are 20 percent communication-sen-
sitive jobs. This decrease is significant when we consider
the machine scale. For Mira in a single month, approxi-
mately 25;38;944 ð¼ 0:1� 30� 24� 49; 152Þ node-hours
are saved, enabling the system to run 72 hours at full
load. In particular, MeshSched achieves lower LoC in most
cases than CFCA and Hybrid do. The reason is that
MeshSched contains only mesh partitions except for 512
nodes, whereas CFCA and Hybrid still use some torus par-
titions, inevitably causing more resource contention than
does MeshSched. Clearly, they all improve the overall
system utilization. MeshSched can improve the utilization
by more than 10 percent in month 2 with 40 percent
communication-sensitive jobs. Although CFCA does not
improve the utilization as much as MeshSched and Hybrid
do, the average improvement is about 5 percent, with
the biggest improvement in month 3 when there are
10 percent communication-sensitive jobs. The reason is
similar to the case of LoC; that is, MeshSched has much
less network resource contention.

Fig. 9 presents the scheduling performance when run-
time slowdown is set to 40 percent. With respect to job wait
time, the Hybrid scheme always outperforms the other three
scheduling policies. For example, in month 1 with 10 per-
cent communication-sensitive jobs, CFCA andHybrid reduce
the wait time by more than 50 percent. Similar performance
improvement is achieved for job response time by using
CFCA andHybrid for month 3. In this case,MeshSched gener-
ally results in a worse job performance than Native does
when there are more than 10 percent communication-sensi-
tive jobs. In months 2 and 3, the job wait time is increased
by up to 100 percent. The reason is that although the
resource contention is reduced by using MeshSched, user
jobs suffer from the substantial runtime expansion caused
by using mesh partitions. Thus, in a scenario in which com-
munication-sensitive jobs are the majority, one would be
wise not to still schedule this jobs to mesh partitions.

Similar to Fig. 8, all three new scheduling schemes
improve LoC. Especially in month 1, CFCA and Hybrid can
greatly reduce LoC, much more than that achieved by using
MeshSched. With respect to system utilization, MeshSched
achieves more than 15 percent increase in some cases. Simi-
lar to Fig. 8, MeshSched improves utilization more than
CFCA and Hybrid do.

Next we more closely examine performance metrics in
a fine-grained way. Figs. 10 and 11 present the average
wait time calculated based on job sizes. The “percentage”
under each figures is the ratio of communication-
sensitive jobs to the whole workload. First, we see that
the wait time increases as the job size becomes larger.
This result coincides with the widely acknowledged fact
that in HPC systems larger jobs stay longer in the wait-
ing queue than do smaller jobs. Second, we see that jobs
at sizes equal to or larger than 1 K all benefit from the
new scheduling schemes. However, jobs at size 512
nodes have their wait time increase. The reason is that
the introduction of mesh and contention-free partitions
improves the availability of partitions consisting of more
than 1 midplane. Moreover, MeshSched is found to not
always help reduce the average wait time. In Fig. 11, the

TABLE 3
Scheduling Schemes Used in the Experiments

Name Network Configuration Scheduling Policy

Native Current config used on Mira
consisting of all torus
partitions

WFP and LB
(see Section II)

MeshSched All possible mesh partitions
and 512-node torus

MeshSched policy
described in Fig. 4

CFCA Current config used on Mira
and additional
contention-free partitions
(1K, 4K, and 32K)

Contention-free and
Communication-aware
policy described in Fig. 5

Hybrid Current config used on Mira
plus all mesh partitions and
contention-free partitions

Combination of
MeshSched and CFCA
described in Fig. 6

3276 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

wait time greatly increases as the percentage of commu-
nication-sensitive jobs is 30 and 50 percent. This implies
that if many users are submitting jobs with substantial
slowdown on a mesh network, the use of full mesh
topology will have more impact on large jobs (i.e., 8 K
or larger). We also notice that jobs at sizes of 1, 4, and
8 K are positively affected the most. From the job distri-
bution we know that 1K-node jobs are in the majority,
which always compete with one another for the wiring
resource along the D dimension. Turning the D dimen-
sion of the 1 K partition into a mesh-connected configu-
ration enables more 1 K-node jobs to run simultaneously.

In summary, our main observations are as follows.

� Since not all applications are sensitive to communica-
tion bandwidth, we find that the existing scheduling
design onMira has much room for improvement. We
believe the use of the new scheduling methods can
improve the overall system performance.

� CFCA andHybrid outperform the existing scheduling
policy on Mira in almost all the simulation cases
across all four scheduling metrics. Even under the
extreme scenario (i.e., when there is a high percent-
age of communication-sensitive jobs), CFCA and

Fig. 8. Comparison of scheduling performance using different scheduling policies, where runtime slowdown is set to 10 percent for communication-
sensitive jobs.

ZHOU ETAL.: IMPROVING BATCH SCHEDULING ON BLUE GENE/Q BY RELAXING NETWORK ALLOCATION CONSTRAINTS 3277

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

Hybrid can gain noticeable improvement on system
performance and reduce fragmentation.

� MeshSched outperforms the current scheduler used on
Mirawhen a small portion of jobs are communication-
sensitive. When a large portion of jobs are communi-
cation-sensitive (e.g., 40 percent), MeshSched reduces
system fragmentation and increases system utiliza-
tion at the cost of increasing job wait time and
response time.

� Hybrid has the best overall performance on reducing
the wait time and response time. If possible, system
administrators should be encouraged to build a

network configuration containing all partition options
and adopt this scheduling policy.

� When 1 and 4 K jobs are the majority of the workload
as inmonth 1, with respect to system utilization,CFCA
greatly reduces job wait times because of the availabil-
ity of 1 and 4 K contention-free partitions. In months 2
and 3, where nearly half the jobs are 512 nodes, the
performance improvement is not as good as that of
month 1. In general, with a small portion of communi-
cation-sensitive jobs (e.g., no more than 10 percent),
we encourage the use ofMeshSched; otherwise, the use
of contention-free partitions is a good choice.

Fig. 9. Comparison of scheduling performance using different scheduling policies, where runtime slowdown is set to 40 percent for communication-
sensitive jobs.

3278 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

6 DISCUSSION ABOUT SYSTEM PARTITIONING

Our study indicates that providing multiple types of parti-
tions on torus-based systems is critical for both improving
resources utilization and guaranteeing good performance
for communication-sensitive applications. Clearly the per-
formance penalty of switching from a torus to a mesh or a
contention-free partition varies with the application. A high-
performance computing center typically has some mixture
of both communication-sensitive and non-communication-
sensitive jobs. A job’s communication sensitivity can be
notified to the scheduler through job submission script by
the user who is fully aware of the job’s behavior. In addition,
the scheduler can also learn a job’s communication sensitiv-
ity based on its historical record. This additional information
will assist the scheduler to select the most appropriate parti-
tion for the job. Alternatively, users should be provided
an option for them to select desirable partitions for their
jobs, such as a torus partition for communication-sensitive
applications like DNS3D and P3DFFT or a mesh/contention-
free partition for non-communication-sensitive applications
like Nek5000.

Hardware serviceability is another benefit on partition-
based machines. Since a partition block is completely iso-
lated from the rest of the machine, the hardware that is not
involved in any running block could be replaced or repaired
with no impact on running jobs. This allows for a rapid
replacement of and recovery from hardware failures,
removing the need for a full machine restart. Such a feature
is critical for maintaining high availability of the machine.
On BG/Q, compute and midplane-to-midplane intercon-
nects are both located on the nodeboard. This is in contrast
to BG/Q’s predecessor, BG/P, where the midplane-to-
midplane interconnects were hosted on its own card
separated from the nodecard. If a block’s wiring is being

used just to pass through a midplane without using the
compute hardware, this midplane will be isolated and can
no longer be connected with other midplanes. For instance,
on BG/Q, a two-midplane-wide partition is built with
wrap-around links for a torus passing the third midplane in
a dimension with length of three; in this case, while the
node hardware on the third midplane is allocatable by the
scheduler, it cannot be used without breaking the torus of
the running block. Nevertheless, by using a mesh connectiv-
ity along this dimension in this case, service and recovery of
the remaining compute hardware can be sped up. Consider
an example of a 32 K block on Mira, which requires two-
thirds of the compute nodes of the entire machine. Such a
block requires passing through the remaining one-third of
the machine for the wiring resources, rendering the entire
machine unserviceable. By making one dimension of this
32 K block as mesh, it becomes a contention-free partition,
and the remaining one-third of the machine can be serviced
without impacting the job running on the 32 K block. We
note that such a minor modification on system partitioning
is especially important for capability computing that is fea-
tured as using a large amount of computing power to solve
big scientific applications.

7 RELATED WORK

A large amount of studies have been conducted on resource
allocation and job scheduling on supercomputers. Evans
et al. studied the variability of performance on clusters and
claimed that tightly allocated jobs had better performance
than did sparse ones [42]. Kramer and Ryan found that vari-
ability introduced by different job allocation strategies can
be mitigated by periodically migrating application tasks
to create larger contiguous chunks [43]. Bhateke and Kale
evaluated the positive impact of locality-aware allocations

Fig. 10. Average wait time with runtime slowdown=0.1 for communication-sensitive jobs.

Fig. 11. Average wait time with runtime slowdown=0.4 for communication-sensitive jobs.

ZHOU ETAL.: IMPROVING BATCH SCHEDULING ON BLUE GENE/Q BY RELAXING NETWORK ALLOCATION CONSTRAINTS 3279

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

on applications performance [44]. Bhateke et al. [45] showed
that with different node allocations, application perfor-
mance changes dramatically. The cause of this variation
could be interference from other jobs sharing the same net-
work links. Several studies have focused on the effects
of resource contention caused by concurrently running jobs.
Jeff et al. [46] discovered that the high variability in perfor-
mance on an SGI Origin 3,800 is due to the resource conten-
tion is caused by concurrent accesses to global memory.
Skinner and Kramer [47] showed that 2-3 times improve-
ment of MPI Allreduce is observed by eliminating network
contention from other jobs. Lo et al. and Leung et al. pre-
sented processor allocation strategies on multi-dimension
network computers [48], [49].

While these studies focusmainly on performance variation
caused by job interference, our work investigates application
sensitivity to communication bandwidth caused by network
configuration change. Moreover, our work examines a suite
of parallel benchmarks and leadership applications at large
scale. The results provide a foundation for the design of a
communication-aware resourcemanagement system.

Arguably, a number of studies have been presented to
improve resources management and scheduling on large-
scale systems from various aspects. Feitelson et al. [50] pro-
vided a detailed analysis of different scheduling strategies.
Zhao et al. [51] proposed network-aware caching mecha-
nisms on large-scale systems such as IBM’s Blue Gene
supercomputers. Desai et al. [12] assessed application per-
formance degradation on shared network and studied how
to improve application performance while efficiently utiliz-
ing the available torus network Pedretti et al. [52] showed
that one can use a large-scale parallel computer Cray XT5 to
emulate the expected imbalance of future exascale systems;
their results indicate that some applications experience sud-
den drops in performance at certain network injection band-
width thresholds. Yang et al. [53] and Zhou et al. [54]
proposed power-aware job scheduling frameworks for
supercomputer systems as a 0-1 knapsack model.

To the best of our knowledge, we are among the first to
systematically investigate communication awareness for
resource management and job scheduling. Furthermore, we
have conducted extensive trace-based simulations to quan-
tify the benefit of communication-aware scheduling over
the existing scheduling design on Mira.

8 CONCLUSIONS

In this paper, we have presented a detailed experimental
study of a suite of parallel benchmarks and applications on
theMira system atArgonne. Our results show substantial var-
iation in performance across production applications as well
as microbenchmarks with different sensitivity to communica-
tion bandwidth. Based on application benchmarking, we
have designed three scheduling schemes—MeshSched, CFCA,
and Hybrid—for Mira by using partitions that require fewer
link resources. Our experiments prove the performance bene-
fit obtained by these new scheduling methods. While this
study targets Mira, our design is generally applicable to all
BG/Q systems aswell as other 5D torus-connectedmachines.

Increasingly, scheduling large systems will become
an exercise in multigoal optimization, considering many
types of orthogonal resources. This paper demonstrates how

traditional scheduling processes can be extended to efficiently
manage a new resource type and the benefits to systemusabil-
ity and utilization that can be realized by such an approach.

Several avenues are open for future work. One is to build
a model to predict whether a job is sensitive to communica-
tion bandwidth based on its historical data. We also plan to
implement the proposed communication-aware policy into
the production scheduler used on Mira. In addition, we are
expanding this work with the aim of developing a smart
resource management framework for better managing non-
traditional resources including I/O and power consumption.

ACKNOWLEDGMENTS

The work at Illinois Institute of Technology is supported in
part by US National Science Foundation grants CNS-
1320125 and CCF-1422009. The FLASH software used in
this work was in part developed by the DOE NNSA-ASC
OASCR Flash Center at the University of Chicago. This
material is based in part upon work supported by the US
Department of Energy, Office of Science, under contract
DE-AC02-06CH11357.

REFERENCES

[1] (2016). Top500 supercomputing web site [Online]. Available:
http://www.top500.org.

[2] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus,
M. E. Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke,
G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-
Burow, T. Takken, and P. Vranas, “Overview of the blue gene/L
system architecture,” IBM J. Res. Dev., vol. 49, no. 2, pp. 195–212,
Mar. 2005.

[3] IBM Journal of Research and Development staff, “Overview of the
IBM Blue Gene/P project,” IBM J. Res. Dev., vol. 52, no. 1/2,
pp. 199–220, Jan. 2008.

[4] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran,
Z. Zhang, and I. Raicu, “ZHT: A Light-weight reliable persistent
dynamic scalable zero-hop distributed hash table,” in Proc. IEEE
27th Int. Symp. Parallel Distrib. Process., 2013, pp. 775–787.

[5] L. Yu, Z. Zheng, Z. Lan, T. Jones, J. M. Brandt, and A. C. Gentile,
“Filtering log data: Finding the needles in the haystack,” in Proc.
Dependable Syst. Netw. Workshops, 2012, pp. 1–12.

[6] (2016, Feb. 4). Managing system software for Cray XE and Cray
XT systems. Cray document [Online]. Available: http://docs.
cray.com/books/S-2393-31/

[7] C. Dong, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. Satterfield, B. Steinmacher-Burow, and
J. Parker, “The IBM blue gene/Q interconnection fabric,” IEEE
Micro, vol. 32, no. 1, pp. 32–43, Jan./Feb. 2012.

[8] T. Budnik, B. Knudson, M. Megerian, S. Miller, M. Mundy, and
W. Stockdell, “Blue gene/q resource management architecture,”
in Proc. IEEE Workshop Many-Task Comput. Grids Supercomput.,
Nov. 2010, pp. 1–5.

[9] Y. Ajima, Y. Takagi, T. Inoue, S. Hiramoto, and T. Shimizu, “The
Tofu interconnect,” in Proc. IEEE 19th Annu. Symp. High Perform.
Interconnects, 2011, pp. 87–94.

[10] W. Tang, Z. Lan, N. Desai, D. Buettner, and Y. Yu, “Reducing frag-
mentation on torus-connected supercomputers,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp., 2011, pp. 828–839.

[11] Z. Zhou, X. Yang, Z. Lan, P. Rich, W. Tang, V. Morozov, and
N. Desai, “Bandwidth-aware resource management for extreme
scale systems,” in Int. Conf. High Perform. Comput., Netw., Storage
Anal. (SC14), poster session, 2014.

[12] N. Desai, D. Buntinas, D. Buettner, P. Balaji, and A. Chan,
“Improving resource availability by relaxing network allocation
constraints on Blue Gene/P,” in Proc. Int. Conf. Parallel Process.,
2009, pp. 333–339.

[13] Z. Zhou, X. Yang, Z. Lan, P. Rich, W. Tang, V. Morozov, and
N. Desai, “Improving batch scheduling on Blue Gene/Q by relax-
ing 5D torus network allocation constraints,” in Proc. IEEE Int.
Parallel and Distrib. Process. Symp., May 2015, pp. 439–448.

3280 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

[14] (2016, Feb. 4). Innovative and Novel Computational Impact on
Theory and Experiment (INCITE) program [Online]. Available:
https://www.alcf.anl.gov/incite-program

[15] (2016, Feb. 4). ASCR Leadership Computing Challenge (ALCC)
[Online]. Available: http://science.energy.gov/ascr/facilities/alcc/

[16] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan,
“Characterization of backfilling strategies for parallel job sched-
uling,” in Proc. Int. Conf. Parallel Process. Workshops, 2002, pp. 514–
519.

[17] P. Keleher, D. Zotkin, and D. Perkovic, “Attacking the bottlenecks
of backfilling schedulers,” Cluster Comput., vol. 3, no. 4, pp. 245–
254, 2000.

[18] D. G. Feitelson. (2016, Feb. 4). Logs of real parallel workloads from
production systems [Online]. Available: http://www.cs.huji.ac.
il/labs/parallel/workload/logs.html

[19] S. Lupetti and D. Zagorodnov, “Data popularity and shortest-job-
first scheduling of network transfers,” in Proc. Int. Conf. Digit. Tele-
commun., Aug. 2006, pp. 26–26.

[20] A. Afzal, A. S. McGough, and J. Darlington, “Capacity planning
and scheduling in grid computing environments,” Future Gener.
Comput. Syst., vol. 24, no. 5, pp. 404–414, May 2008.

[21] T. Li, D. Baumberger, and S. Hahn, “Efficient and scalable multi-
processor fair scheduling using distributed weighted round-
robin,” in Proc. 14th ACM SIGPLAN Symp. Principles Practice
Parallel Program., 2009, pp. 65–74.

[22] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson,
“Statistics-driven workload modeling for the cloud,” in Proc. IEEE
26th Int. Conf. Data Eng. Workshops, Mar. 2010, pp. 87–92.

[23] A. Mu’alem and D. Feitelson, “Utilization, predictability, work-
loads, and user runtime estimates in scheduling the IBM SP2 with
backfilling,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 6,
pp. 529–543, Jun. 2001.

[24] D. A. Lifka, “The ANL/IBM SP scheduling system,” in Proc. Work-
shop Job Scheduling Strategies Parallel Process., 1995, pp. 295–303.

[25] J. Skovira, W. Chan, H. Zhou, and D. A. Lifka, “The EASY - Load-
Leveler API project,” in Proc. Workshop Job Scheduling Strategies
Parallel Process., 1996, pp. 41–47.

[26] D. B. Jackson, Q. Snell, and M. J. Clement, “Core algorithms of the
maui scheduler,” in Proc. Revised Papers 7th Int. Workshop Job Sched-
uling Strategies Parallel Process., 2001, pp. 87–102.

[27] (2016, Feb. 4). Cobalt resource manager [Online]. Available:
https://trac.mcs.anl.gov/projects/cobalt

[28] W. Tang, Z. Lan, N. Desai, and D. Buettner, “Fault-aware, utility-
based job scheduling on Blue Gene/P systems,” in Proc. IEEE Int.
Conf. Cluster Comput. Workshops, 2009, pp. 1–10.

[29] P. B. Hansen, “An analysis of response ratio scheduling,” in Proc.
IFIP Congress, 1971, pp. 479–484.

[30] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga, “The NAS parallel
benchmarks,” Tech. Rep., 1991.

[31] P. Fischer, J. Lottes, D. Pointer, and A. Siegel, “Petascale algo-
rithms for reactor hydrodynamics,” J. Phys.: Conf. Series, vol. 125,
no. 1, 2008.

[32] (2016, Feb. 4). The FLASH code [Online]. Available: http://www.
flash.uchicago.edu/site/flashcode/

[33] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale,
D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo,
“FLASH: An adaptive mesh hydrodynamics code for modeling
astrophysical thermonuclear flashes,” The Astrophys. J. Suppl.
Series, vol. 131, no. 1, p. 273, 2000.

[34] R. T. Fisher, L. Kadanoff, D. Q. Lamb, A. Dubey, T. Plewa,
A. C. Calder, F. Cattaneo, P. Constantin, I. T. Foster, M. E.
Papka, S. I. Abarzhi, S. M. Asida, P. M. Rich, C. C. Glendenin,
K. Antypas, D. J. Sheeler, L. B. Reid, B. Gallagher, and S. G.
Needham, “Terascale turbulence computation on BG/L using
the FLASH3 code,” IBM J. Res. Develop., vol. 52, pp. 127–136,
12/2007 2007.

[35] M. A. Taylor, S. Kurien, and G. Eyink, “Recovering isotropic sta-
tistics in turbulence simulations: The Kolmogorov 4/5th-law,”
Phys. Rev. E, vol. 68, no. 2, p. 026310, 2003.

[36] S. Plimpton, “Fast parallel algorithms for short-range molecular
dynamics,” J. Comput. Phys., vol. 117, no. 1, pp. 1–19, 1995.

[37] (2016, Feb. 4). Lammps [Online]. Available: https://www.alcf.anl.
gov/user-guides/lammps

[38] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo,
and M. Yarrow, “The NAS parallel benchmarks 2.0,” Tech. Rep.
NAS-95-010, 1995.

[39] W. Tang, N. Desai, D. Buettner, and Z. Lan, “Analyzing and
adjusting user runtime estimates to improve job scheduling on
the Blue Gene/P,” in Proc. IEEE Int. Symp. Parallel Distrib. Process.,
Apr. 2010, pp. 1–11.

[40] J. Jones and B. Nitzberg, “Scheduling for parallel supercomputing:
A historical perspective of achievable utilization,” in Proc. Job
Scheduling Strategies Parallel Process., 1999, vol. 1659, pp. 1–16.

[41] Y. Xu, Z. Zhou, W. Tang, X. Zheng, J. Wang, and Z. Lan,
“Balancing job performance with system performance via
locality-aware scheduling on Torus-connected systems,” in Proc.
IEEE Int. Conf. Cluster Comput., Sep. 2014, pp. 140–148.

[42] J. Evans, W. Groop, and C. Hood, “Exploring the relationship
between parallel application run-time and network performance
in clusters,” in Proc. 28th Annu. IEEE Int. Conf. Local Comput.
Netw., Oct. 2003, pp. 538–547.

[43] W. T. C. Kramer and C. Ryan, “Performance variability of highly
parallel architectures,” in Proc. Int. Conf. Comput. Sci.: PartIII, 2003,
pp. 560–569.

[44] A. Bhatele and L. Kale, “Application-specific topology-aware
mapping for three dimensional topologies,” in Proc. IEEE Int.
Symp. Parallel Distrib. Process., Apr. 2008, pp. 1–8.

[45] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: Performance degradation due to nearby jobs,”
in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2013,
pp. 41:1–41:12.

[46] H. Jeff, A. Robert, D. Daniel, F. Mark, H. Lee, O. Tom, W. William,
B. MMarty, and B. Jeff, “Minimizing runtime performance varia-
tion with Cpusets on the SGI Origin 3,800,” in ERDC MSRC PET
Preprint, pp. 1–32, 2001.

[47] D. Skinner and W. Kramer, “Understanding the causes of perfor-
mance variability in HPC workloads,” in Proc. IEEE Int. Workload
Characterization Symp., Oct. 2005, pp. 137–149.

[48] V. Lo, K. Windisch, W. Liu, and B. Nitzberg, “Noncontiguous pro-
cessor allocation algorithms for mesh-connected multi-
computers,” IEEE Trans. Parallel Distrib. Syst., vol. 8, no. 7,
pp. 712–726, Jul. 1997.

[49] V. Leung, E. Arkin, M. Bender, D. Bunde, J. Johnston, A. Lal,
J. Mitchell, C. Phillips, and S. Seiden, “Processor allocation
on cplant: Achieving general processor locality using one-
dimensional allocation strategies,” in Proc. IEEE Int. Conf. Cluster
Comput., 2002, pp. 296–304.

[50] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel job
scheduling strategies for parallel processing,” in Proc. 10th Int.
Conf. Job Scheduling Strategies Parallel Process., 2005, pp. 1–16.

[51] D. Zhao, K. Qiao, and I. Raicu, “HyCache+: Towards scalable
high-performance caching middleware for parallel file systems,”
in Proc. 14th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput.,
2014, pp. 267–276.

[52] K. Pedretti, R. Brightwell, D. Doerfler, K. Hemmert, and I. Laros,
James H, “The impact of injection bandwidth performance on
application scalability,” in Proc. 18th Eur. MPI Users’ Group Conf.
Recent Adv. Message Passing Interface, 2011, vol. 6960, pp. 237–246.

[53] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan, and
M. E. Papka, “Integrating dynamic pricing of electricity into
energy aware scheduling for HPC systems,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2013, pp. 60:1–60:11.

[54] Z. Zhou, Z. Lan, W. Tang, and N. Desai, “Reducing energy costs
for IBM Blue Gene/P via power-aware job scheduling,” in Proc.
17th Int. Workshop Job Scheduling Strategies Parallel Process., 2014,
pp. 96–115.

Zhou Zhou received the BS degree from Beijing
Jiaotong University in 2009. He is currently work-
ing toward the PhD degree in computer science
at the Illinois Institute of Technology since 2009.
His main research interests are in the areas of
intelligent resource management for exascale
computing systems, system performance analy-
sis and optimization, and job scheduling on large-
scale systems. He is a student member of the
IEEE computer society.

ZHOU ETAL.: IMPROVING BATCH SCHEDULING ON BLUE GENE/Q BY RELAXING NETWORK ALLOCATION CONSTRAINTS 3281

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

Xu Yang received the MS degree in computer
science from Beijing Normal University in 2012.
He is currently working toward the PhD degree at
the Computer Science Department of IIT. His cur-
rent research interest is resource management
and job scheduling on HPC and distributed sys-
tems. He is a student member of the IEEE.

Zhiling Lan received the PhD degree in com-
puter engineering from Northwestern University
in 2002. She has since joined the faculty of the
Illinois Institute of Technology and is currently a
professor at the Department of Computer Sci-
ence. She is also a guest research faculty at the
Argonne National Laboratory. Her research inter-
ests are in the areas of parallel and distributed
systems, with particular emphasis on fault toler-
ance, power efficiency, resource management
and job scheduling, performance analysis and

optimization. She is a senior member of the IEEE computer society.

Paul Rich recieved the masters of science in
computer science degree from the University of
Chicago in 2006. He has since joined the staff
of the Argonne National Laboratory and is cur-
rently a software developer for the Argonne Lead-
ership Facility’s Advanced Integration Group. He
is currently the primary developer of the Cobalt
scheduler and resource manager. His primary
research interests are high performance and par-
allel algorithms, system scheduling, resource
management, and system scalability.

Wei Tang received the PhD degree in the Depart-
ment of Computer Science at the Illinois Institute
of Technology and was a postdoc researcher at
the Argonne National Laboratory. He is currently a
software engineer at Google, Inc. His research
interests include parallel and distributed comput-
ing, job scheduling and resource management for
large-scale systems, etc.

Vitali Morozov received the BS degree in math-
ematics from Novosibirsk State University and
the PhD degree in computer science from
the Ershov’s Institute of Information Systems,
Novosibirsk, Russia. He is a principal application
performance engineer at the Argonne Leadership
Computing Facility. In Argonne National Labora-
tory since 2001, he has been working on com-
puter simulation of plasma generation, plasma C
material interactions, plasma thermal and optical
properties, and applications to laser and dis-

charge produced plasmas. In ALCF, he has been working on perfor-
mance projections and studying the hardware trends in the HPC, as well
as porting and tuning applications to large supercomputers.

Narayan Desai is a principal engineer at Erics-
son. His primary areas of work are resource man-
agement, system management, and system
design. Prior to Ericsson, he spent 14 years at
Argonne National Lab, working on a variety of
issues in HPC software and systems, as well as
metagenomics.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

3282 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on February 15,2021 at 23:37:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

