
A Transparent Collective I/O Implementation

Yongen Yu, Jingjin Wu, Zhiling Lan

Department of Computer Science

Illinois Institute of Technology

Chicago, USA

{yyu22, jwu45, lan}@iit.edu

Nickolay Y. Gnedin

Theoretical Astrophysics Group

Fermi National Accelerator Laboratory

Batavia, IL

gnedin@fnal.gov

Douglas H. Rudd

Research Computing Center

University of Chicago

Chicago, USA

drudd@uchicago.edu

Andrey Kravtsov

Department of Astronomy and Astrophysics

The University of Chicago

Chicago, IL

andrey@oddjob.uchicago.edu

Abstract—I/O performance is vital for most HPC applications

especially those that generate a vast amount of data with the

growth of scale. Many studies have shown that scientific

applications tend to issue small and noncontiguous accesses in an

interleaving fashion, causing different processes to access

overlapping regions. In such scenario, collective I/O is a widely

used optimization technique. However, the use of collective I/O

deployed in existing MPI implementations is not trivial and

sometimes even impossible. Collective I/O is an optimization

based on a single collective I/O access. If the data reside in

different places (e.g. in different arrays), the application has to

maintain a buffer to first combine these data and then perform

I/O operations on the buffer rather than the original data pieces.

The process is very tedious for application developers. Besides,

collective I/O requires the creating of a file view to describe the

noncontiguous access patterns and additional coding is needed.

Moreover, for the applications with complex data access using

dynamic data sizes, it is hard or even impossible to use the file

view mechanism to describe the access pattern through derived

data types. In this study, we develop a user-level library called

transparent collective I/O (TCIO) for application developers to

easily incorporate collective I/O optimization into their

applications. Preliminary experiments by means of a synthetic

benchmark and a real cosmology application demonstrate that

the library can significantly reduce the programming efforts

required for application developers. Moreover, TCIO delivers

better performance at large scales as compared to the existing

collective functionality provided by MPI-IO.

Keywords-component; Transparent Collective I/O, Collective

I/O, Parallel I/O, MPI, One-sided communication, I/O intensive

applications, HPC

I. INTRODUCTION

Studies have shown that the processes of parallel

applications tend to access a large number of small and

noncontiguous pieces of data from a file, leading to the access

of overlapping regions by different processes [1] [2] [3] [4].

Many applications need to map their multidimensional

computing volume to one-dimensional file blocks in the

eventual file order before performing I/O. For example,

Scalable Earthquake Simulation (SCEC) partitions the 3D

computing volume into a set of slices and assigns each slice to

a core [5]; both S3D and Pixie3D divide their computing

volumes into small cubes and assign each small cube to one

core [6]. If mapping all the cells of the computing volume one-

by-one in the order of x, y, and z, each process would access

many small noncontiguous data blocks in an interleaving

fashion (see Figure 1). Such I/O access patterns lead to poor

parallel I/O performance and optimizations are necessary.

Collective I/O [7] is a common optimization mechanism that

is used to improve parallel I/O performance with such access

patterns. That is, collective I/O is used to improve IO

performance when each process accesses several

noncontiguous portions of a file and the requests of different

processes are interleaved and together span large contiguous

portions of the file [7].

Figure 1. An example to illustrate the mapping from multiple dimensional

computing volume to one dimensional file blocks, where each slice of the

computing volume is assigned to a process. For writes, each process outputs

four noncontiguous blocks with the stride distance equal to eight cells.

Despite the compelling advantage of collective I/O, studies
have shown that some applications prefer to use POSIX (or
POSIX stream) rather than using collective functionality

provided by MPI-IO [8]. The existing collective functionality
provided by MPI-IO (denoted as “the original collective I/O
(OCIO)” in the rest of this paper) is not transparent to
applications, and requires extra coding from application
developers. We argue there are three issues with OCIO.

First, an application may use multiple in-memory data
structures to store their data. Since OCIO is an optimization for
a single collective I/O call, data blocks from multiple data
structures must be first combined and cached into an
application level buffer before issuing a single collective MPI-
IO call [9] [10] [11]. Maintaining such a buffer within each
process requires additional programming efforts. Further, a
poorly designed buffer can lead to a waste of memory. Hence,
the first question is: can we let application developers focus on
their I/O operations and free them from explicitly
manipulating an extra application-level buffer to use
collective I/O?

Second, OCIO requires users to define a file view in their
code to handle noncontiguous I/O accesses from multiple
application processes. Each file view consists of two parts: the
elementary data types to describe individual data elements and
the file data types to describe data distribution in the file.
Again, creating a file view requires extra coding. The second
question is: can we free application developers from writing
extra file view code for using collective I/O?

Finally, many parallel applications perform computations
using complex, dynamic data structures that change during the
course of execution. As a result, the noncontiguous data blocks
are of different sizes. It is hard or even impossible for users to
use a single derived data type instance to describe these data
blocks. Hence the third question is: can we use collective I/O
to boost parallel I/O performance of the applications whose
data blocks are of different sizes and varying distances?

To address the above problems, in this paper we design and
develop a user-level library, called transparent collective I/O
(TCIO), to facilitate the use of collective I/O for parallel
applications with random noncontiguous access patterns. The
library exposes POSIX-like interfaces for applications to
perform parallel I/O operations. Application developers are
freed from writing derived data types to describe the
noncontiguous access patterns of their codes. The library is
built on two key elements. First is a 2-level buffer approach.
When an application calls the library, the library transparently
creates two levels of buffers per application process. The level-
1 buffers are responsible for combining small data blocks
within each process, and the level-2 buffers rearrange the I/O
requests from different processes in a file-offset order. Second
is the use of one-sided communication for data exchange
among processes.

TCIO is a new implementation of collective I/O, which
differs from the existing implementation provided by MPI-IO
(i.e. OCIO) at four key aspects. First, TCIO frees application
developers from explicit management of application-level
buffers for achieving collective I/O. Second, by using TCIO,
application developers do not need to write extra codes to
describe file view. Both features can be easily observed by
comparing Program 2 and 3 listed in Section V. Consequently,
the amount of programming efforts needed by TCIO is

significantly less than that required by OCIO. Third, TCIO
facilities the use of collective I/O for the applications using
complex, dynamic data structures like the cosmology
application presented in Section V. Finally, TCIO adopts
several optimization techniques to improve I/O performance
including one-sided communication for data exchange among
processes and lazy-loading for read operations.

We evaluate the library by means of both a synthetic
benchmark and a real cosmology application. The synthetic
benchmark is used to extensively compare TCIO as against
ROMIO (an implementation of OCIO) [12] in terms of both
programming efforts and I/O performance. The cosmology
application highlights the benefits of TCIO in the case where
OCIO cannot be used. Together, these case studies demonstrate
that TCIO library can significantly reduce programming efforts
from application developers, while providing comparable or
even better I/O performance as against OCIO.

The remainder of this paper is organized as follows. Section
II discusses the related work. Section III introduces the
background of collective I/O. We describe the design
methodology of TCIO in Section IV. Experiments are listed in
Section V. Finally, we draw the conclusions in Section VI.

II. RELATED WORK

Recognizing that some scientific applications access
multiple files simultaneously for different array data, G. Memik
et al. introduce Multicollective I/O (MCIO) to extend
Collective I/O by taking the inter-file access patterns into
consideration [13]. Their study shows that determining the
optimal MCIO access pattern is an NP-complete problem.
Therefore, they propose two heuristics (Greedy Heuristic and
Maximal Matching Heuristic) to determine the MCIO access
patterns.

Overlapping computation with communication is a widely
used optimization to reduce the overhead associated with
parallel I/O in the field of HPC. V. Venkatesan et al. present
the challenges associated with developing non-blocking
collective I/O operations [14]. They extend the libNBC library
in conjunction with Open MPI’s OMPIO framework to handle
non-blocking collective I/O operations.

W. Yu et al. claim that the time spent in the global process
synchronization dominates the actual IO time and point out that
there exists a “collective wall” in the performance of collective
I/O [15]. To address the issue, the authors introduce a novel
technique called partitioned collective I/O (ParColl) to augment
the collective I/O protocol with new mechanisms for file
domain partitioning, I/O aggregator distribution and
intermediate file views. By using ParColl, a group of processes
and their corresponding files are divided into a collection of
small groups and each group performs I/O aggregation in a
disjointed manner.

In [16], J. Blas et al. propose an alternative implementation
of collective I/O, namely view-based collective I/O. It
improves the performance of collective I/O by reducing the
cost of data scatter-gather operations, file metadata transfer,
consecutive collective communication and synchronization
operations.

There are several studies on the improvement of
I/O by exploring parallelism and physical locality. Y. Chen et
al. propose a new collective I/O strategy, called Layout Aware
Collective I/O (LACIO) [17]. This new collective I/O strategy
explores on the physical data layout of the parallel file system
instead of the logical file layout for performance optimization
Basically, LACIO incorporates the physical
and information from parallel file systems with parallel I/O
middleware. Requests from aggregators and file
partitions are rearranged in a fashion that match
physical data layout on storage servers of
system.

By considering the pattern of file stripping over multiple
I/O nodes in the parallel file system, Zhang et al. design
new Collective I/O implementation, named resonant I/O
which rearranges requests from multiple processes
presumed on-disk data layout so as to turn non
accesses into sequential accesses. Resonant I/O
requests to an I/O node to be from the same agent process or
coordinates the requests from multiple processes to each I/O
node in a preferred order.

Many modern parallel file systems
consistency rules via locking mechanisms,
process to exclusive access the requested file region
concurrent I/O requests on the shared file. Due to
serialization caused by locking, W. Liao et al.
file domain partition methods (i.e., partitioning aligned with
lock boundaries, static-cyclic partitioning, and group
partitioning) for collective I/O optimization [19

Unlike the aforementioned studies that focus on
collective I/O from the performance perspective,
intended to provide a new collective I/O implementation
conducts collective I/O optimization transparently
leveraging knowledge from the applications
user-level TCIO library frees application developers
writing I/O optimization code. It also allows
with complex access patterns to use collective

Collective buffering is often used in

implementations to boost parallel I/O performance at large

scale. It selects a subset of nodes to communicate with IO

servers for the purpose of reducing IO contention

While collective buffering can optimize a single collective call,

TCIO is a new implementation of collective I/O

contiguous requests of a file from multiple processes

that in this study we do not enable collective buffering in the

experiments.

III. BACKGROUND OF COLLECTIVE I

In this section, we first briefly describe collective I/O,
then demonstrate how to use collective I/O through a
example.

A. Basic Design

MPI derived data types are a key feature of
specification. They provide an elegant and efficient way to
express noncontiguous, mixed types of data. OC
of the MPI specification, inherits this feature.

ment of collective
I/O by exploring parallelism and physical locality. Y. Chen et
al. propose a new collective I/O strategy, called Layout Aware

. This new collective I/O strategy
parallel file system

for performance optimization.
the physical data distribution

file systems with parallel I/O
equests from aggregators and file domain’s

matches with the
storage servers of the parallel file

pping over multiple
Zhang et al. designed a

resonant I/O [18],
which rearranges requests from multiple processes by the

disk data layout so as to turn non-sequential
Resonant I/O allows I/O

I/O node to be from the same agent process or
coordinates the requests from multiple processes to each I/O

odern parallel file systems maintain data
 which assign a

the requested file region in case of
Due to the potential

, W. Liao et al. develop three
(i.e., partitioning aligned with

cyclic partitioning, and group-cyclic
19].

that focus on improving
performance perspective, this work is

a new collective I/O implementation that
zation transparently without

applications. The resulting
application developers from

s the applications
ollective I/O.

Collective buffering is often used in MPI-IO

boost parallel I/O performance at large

selects a subset of nodes to communicate with IO

servers for the purpose of reducing IO contention [20] [21].

can optimize a single collective call,

TCIO is a new implementation of collective I/O targeting non-

contiguous requests of a file from multiple processes. Note

that in this study we do not enable collective buffering in the

OF COLLECTIVE I/O

briefly describe collective I/O, and
collective I/O through an

key feature of the MPI
nd efficient way to

guous, mixed types of data. OCIO, as a subset
of the MPI specification, inherits this feature. It requires each

process to use the MPI derived data type instances
the noncontiguous access patterns and pass them to the
by laying out a “view” of the file via
subroutine.

OCIO divides the I/O operations into
and an I/O phase [7]. When an
subroutines to output the data in
OCIO calculates the file domain accessed by the application
via the minimum and maximum file offsets. The aggregate file
domain is then divided into equal, disjointed file regions
each region is assigned to a temporary buffer
aggregator). The data from the application level
shuffled among the computing processes according to
offset and placed in the temporary buffers
aggregators then perform write calls on behalf of all
processes to output data to the file system
invokes MPI-IO read operations, the aggregators
delegators to move the data from file
buffers and then distribute them to the target process

B. An Example

In order to clearly describe
necessitated by using OCIO, we introduce a simple
here. Consider an application that performs computation
on two in-memory arrays of type int and double
At write, the application first interleaves
types at the same array location, and then place
single, shared file in a round-robin manner.

Figure 2. An example to illustrate OCIO, where there are two application

processes, and each process accesses two arrays (white and grey)

Figure 2 shows the write operations of the application by
using OCIO. Here we assume that the number of processes is
two and the array length is three. Each application process
has to copy and combine the data of the two in
into one application level buffer, because OCIO is an
optimization for one single MPI-I/O call a
only operate on one in-memory data structure. In this
application, the buffer combines the variables in

he MPI derived data type instances to describe
and pass them to the library

out a “view” of the file via the “MPI_File_set_view”

divides the I/O operations into a data exchange phase
 application invokes OCIO

to output the data in application level buffers,
the file domain accessed by the application

via the minimum and maximum file offsets. The aggregate file
, disjointed file regions, and

each region is assigned to a temporary buffer per process (a.k.a.
application level buffers are

computing processes according to the file
in the temporary buffers of aggregators. The
perform write calls on behalf of all the

file system. When an application
IO read operations, the aggregators serve as I/O

from files to their temporary
and then distribute them to the target processes.

describe the programming efforts
introduce a simple example
performs computation based

type int and double, respectively.
interleaves variables of the two

and then places variables in a
manner.

, where there are two application

two arrays (white and grey).

Figure 2 shows the write operations of the application by
that the number of processes is

two and the array length is three. Each application process first
has to copy and combine the data of the two in-memory arrays
into one application level buffer, because OCIO is an

I/O call and each MPI call can
memory data structure. In this

application, the buffer combines the variables in round-robin

fashion: The first position of the buffer holds the first element
of the int array; the second position records the fir
the double array; the third and fourth slots hold the second
elements of the int array and double array; finally, all the
variables are combined in the application level buffer.

After combining the data, each application
file view to define the noncontiguous acces
bottom of Figure 2 illustrates the file views describing the I/O
access regions of different processes. Each file view consists of
three parameters: displacement, etype and filetype.
example, “etype” is a contiguous derived data type consisting
of two numbers: one integer number and one double number;
“filetype” is a vector with the stride equals
processes times the size of etype; the displacements of
process one and process two are 0 and
respectively. All the information is passed to the
library through the “MPI_File_set_view” function

When the application invokes the collective MPI
subroutine to output the data buffered in the
buffer, the I/O operations are divided into two phases. In the
data exchange phase, all the noncontiguous data blocks are
ordered by the logical file offsets to form one large contiguous
data block. After that, the block is evenly partitioned i
parts. The first part is assigned to the first process
second part is assigned to the second process. Therefore, each
process only needs to issue one contiguous access
three small accesses during the I/O phase. Moreover, the
regions accessed by different processes are disjoint

IV. TRANSPARENT COLLECTIVE I/O DESIGN AND

IMPLEMENTATION

In this section, we present the design and implementation
TCIO, which is capable of transparently boost
performance of parallel applications with noncontiguous
accesses.

A. Main Design

Figure 3 depicts the layered architecture of
top layer, it exposes POSIX-like interfaces for MPI
applications to interact with the library. Beneath that,
library provides two levels of buffers to expedite I/O
operations. The level-1 buffers are for combining
data blocks within the same process locally,
buffers are used to reorganize I/O accesses
processes. The level-1 buffers are private to each process,
while the level-2 buffers are shared among all application
processes through MPI-2 one-sided communication.

Since TCIO, similar to OCIO, is an optimization for
IO, it uses basic MPI-IO routines to move data between
level-2 buffers and the file system.

TCIO exposes POSIX-like interfaces for parallel
applications to perform IO operations based on each piece of
data. It is capable of performing collective I/O optimization
across multiple I/O requests. The level-1 buffe
indispensible component to deliver such a feature. The level
buffer is used to combine data blocks of a sequential I/O
accesses within the same process locally.

fashion: The first position of the buffer holds the first element
array; the second position records the first element of

array; the third and fourth slots hold the second
array; finally, all the

variables are combined in the application level buffer.

 process creates a
the noncontiguous access patterns. The

describing the I/O
file view consists of

three parameters: displacement, etype and filetype. In this
, “etype” is a contiguous derived data type consisting

number and one double number;
s the number of

he displacements of the
two are 0 and sizeof(etype)

the collective I/O
the “MPI_File_set_view” function.

collective MPI-IO writing
the application level

buffer, the I/O operations are divided into two phases. In the
data exchange phase, all the noncontiguous data blocks are

to form one large contiguous
the block is evenly partitioned into two

parts. The first part is assigned to the first process, and the
second part is assigned to the second process. Therefore, each

access instead of
the I/O phase. Moreover, the

fferent processes are disjoint.

O DESIGN AND

and implementation of
boosting the I/O

with noncontiguous

layered architecture of TCIO. At the
interfaces for MPI

to interact with the library. Beneath that, the
s to expedite I/O

for combining in-memory
the same process locally, and the level-2

es from different
to each process,

among all application
sided communication.

OCIO, is an optimization for MPI-
O routines to move data between the

like interfaces for parallel
applications to perform IO operations based on each piece of
data. It is capable of performing collective I/O optimization

1 buffer is an
indispensible component to deliver such a feature. The level-1
buffer is used to combine data blocks of a sequential I/O

Figure 3. The archetecture of transparent

The level-2 buffers are used to coordinate I/O requests
among application processes so as to improve parallel I
performance. Since the library does not leverage any
information from the application regarding the file domain
accessed by the application, it does not know
size it should allocate for the level
level-2 buffer consists of multiple equal size
segments of different processes are mapped to
in a round-robin fashion according to the logical file offset
Figure 3). This design achieves good
the buffered data from different processes
operations, the application has to know the rank id of
remote MPI process that holds the required data (
segment id (IDsegment), and the displacement from the starting of
the segment (DISPblock) of the desired
can be calculated using the following equations:

 ID���� �
�		
��

���������
%

 ID������� �
�		
��

���������

 DISP�� !� � OFFSET %

where OFFSET is the logical file offset of
SIZEsegment is the size of one level
NUMprocesses is the number of processes
library can calculate these three values in O
logical file offset of a data block.

The level-2 segment size (SIZEsegmen

for TCIO. If the segment size is
granularity of the underlying file system, MPI processes might
compete with each other for the privilege
region, leading to poor performance. A large
might render an extremely unbalanced data
MPI processes. Based on these facts,
stripe size (the locking granularity) of underlying file system

TCIO uses the level-1 buffers to combine
data together. The combined data are placed in
buffers as segments. If a combined data block were
the size of one level-2 buffer segment, it has to be
and placed in different segments of the level
there is no benefit to setting the size of level
than the segment size of the level-2 buffer

transparent collective I/O

used to coordinate I/O requests
so as to improve parallel I/O

Since the library does not leverage any
application regarding the file domain

accessed by the application, it does not know in advance what
allocate for the level-2 buffers. In TCIO, each

multiple equal sized segments and the
are mapped to the file regions

robin fashion according to the logical file offset (see
good load balance in terms of

different processes. As for lookup
operations, the application has to know the rank id of the

that holds the required data (IDrank), the
and the displacement from the starting of

desired data block. These values
the following equations:

% NUM)� !����� (1)

 /NUM)� !����� (2)

% SIZE������� (3)

is the logical file offset of the target data block,
level-2 buffer segment and

number of processes of MPI application. The
these three values in O (1) time given the

segment) is a crucial parameter
size is smaller than the lock

granularity of the underlying file system, MPI processes might
privilege to access a locked

region, leading to poor performance. A large segment size
unbalanced data distribution among

s. Based on these facts, we set segment size as the
of underlying file system.

to combine multiple pieces of
data together. The combined data are placed in the level-2

nts. If a combined data block were larger than
segment, it has to be subdivided

and placed in different segments of the level-2 buffers. Since
the size of level-1 buffer larger

2 buffer, we set them to be

equal, and each level-1 buffer is aligned with one level-2 buffer
segment.

For write operations, TCIO buffers the data blocks in the
level-1 buffer. It also retains the ,-./01234 together with the
length of the data blocks. Processes individually send out level-
1 buffered data to the level-2 buffer when either the file domain
of cached data blocks exceeds the size of the level-1 buffer or
the application explicitly invokes the “flush” function. During
the reading phase, TCIO moves the data in the other direction.
Instead of using a preloading technique, TCIO uses a lazy-
loading strategy for read operations. In particular, when the
application issues read calls, rather than loading the data, the
library stores the address, the length and the ,-./01234 of the
target data blocks. The real data-loading tasks take place when
either the file domain of cached reads exceeds the size of the
level-1 buffer, or the applications explicitly request the library
to load data.

OCIO uses non-blocking communication to shuffle data
across the computing processes at the data exchange phase in
the all-to-all manner. Non-blocking communication
(Isend/Irecv) is a two-sided communication model, which
requires a matching pair on both sender and receiver sides.
OCIO first issues MPI_Irecv to receive data from all processes,
then issues MPI_Isend to send data to all processes, and then
waits until all communication complete [22]. TCIO, however,
cannot use two-sided communication. It allows processes to
issue I/O calls for each piece of data individually, and as a
result, different processes may issue a different number of I/O
requests. TCIO instead relies on one-sided communication,
which removes the requirement of a matching pair in both
sender and receiver sides and allows the processes to initiate an
end-to-end data movement across computing nodes from either
the sender or receiver side. During writes, TCIO initiates data
movements from the sender side. During reads, the receivers
pull over the data from the level-2 buffer of the remote process.

In one-sided communication, “MPI_Win_fence” is the
simplest approach to allow all processes to synchronize.
However, “MPI_Win_fence” is a collective call, which by
nature would break the TCIO design, which allows all the I/O
accesses to be performed independently. Therefore, we use the
lock-request paradigm (“MPI_Win_lock” and
“MPI_Win_unlock”) in the TCIO implementation.

When TCIO moves data between level-1 and level-2
buffers, these data consist of multiple disjointed data blocks. If
it were to move each piece of data with its own one-sided
communication call (MPI_Get, MPI_Put), this would cause a
large number of network connections, which would in turn
degrade the performance. We use “MPI_Type_indexed” to
combine multiple data blocks as one derived data type instance.
The library can then transfer the newly created data type
instance by a single one-sided communication call.

B. Implementation

TCIO library is written in C language. It consists of about a
thousand lines of code. We distribute it as a user-level library.
Program 1 is the API definition of the library. It exposes
POSIX-like I/O interfaces for parallel applications. It also
allows applications to perform I/O operations based on MPI

data types. “tcio_flush” function allows the application to
explicitly move data from the level-1 buffers to the level-2
buffers. It is a collective call, which invokes “MPI_Barrier” to
synchronize among processes. Since the library uses a lazy-
loading strategy for reading operations, the actual data are not
loaded into the target places after the read calls return. The
library provides “tcio_fetch” function to enable applications to
inform the library to load the desired data blocks to the target
locations explicitly. “tcio_close” function issues “MPI_barrier”
to synchronize among processes before outputting data from
the level-2 buffers to file system.

To use TCIO, a user needs to specify the segment size and
the number of segments per process.

C. An Example

Figure 4 uses the same example as shown in Figure 2 to
demonstrate the algorithm of TCIO. For simplicity, we assume
that each process holds one segment of the level-2 buffer.

At the first step, process 1 outputs the first element of the
int array via a TCIO call. Since this piece of data will be stored
at the beginning of the file, process 1 aligns its level-1 buffer
with the first segment of the level-2 buffer and places the int
value at the beginning of the level-1 buffer. After that, process
1 issues another TCIO call to output the first element of the
double array, which is also stored in the level-1 buffer.
Similarly, process 2 aligns its level-1 buffer with the first
segment of the level-2 buffer and places the first element of the
two in-memory arrays in its level-1 buffer.

At the second step, process 1 outputs the second element of
the two in-memory arrays by invoking another two write calls.
Since these two pieces of data fall into the same segment of the
level-2 buffer with the previous writes, they can be placed in
the current level-1 buffer. At this stage, process 2 cannot place
the second elements of its two in-memory arrays in its level-1
buffer because these data blocks fall into a different segment of
the level-2 buffer. It must first flush the data in its level-1
buffer to the global level-2 buffer.

Program 1: API Definition

tcio_file * tcio_open(char * fname, int mode)

tcio_write (tcio_file *fh , void * data, int count,

MPI_Datatype type)

tcio_write_at (tcio_file *fh , MPI_Offset offset,void *

data, int count, MPI_Datatype type)

tcio_read(tcio_file * fh, void * data, int count,

MPI_Datatype type)

tcio_read_at(tcio_file * fh, MPI_Offset offset , void * data,

int count, MPI_Datatype type)

tcio_seek(tcio_file * fh, MPI_Offset offset, int whence)

tcio_flush(tcio_file * fh)

tcio_fetch(tcho_file * fh)

tcio_close(tcho_file * fh)

Figure 4. The work flow of TCIO. Step 1 shows the content

3 presents the contents of level-1 and level-2 buffers after the ap

level-2 buffers after the application outputs the third elements of each array.

At the third step, process 2 aligns its level-
second segment of the level-2 buffer and places the second
elements of the two in-memory arrays in level-

At the fourth step, process 1 attempts to output the third
pair of elements. Since these writes fall outside the first
segment that the level-1 buffer is aligned with, the library
flushes the level-1 buffer and moves these data blocks to the
level-2 buffer.

At the fifth step, process 1 aligns the level-
second segment of the level-2 buffer and places the third
elements of the two arrays in the level-1 buffer. Process 2 also
places the third elements of its two in-memory arrays in its
level-1 buffer.

At the sixth step, both the processes flush all the buffered
data from the level-1 buffers to the level-2 buffers.

By comparing Figure 4 and Figure 2, it is clear that the
actual I/O operations adopted by TCIO and OCIO are different.
As we will show in the next section, the amount of
programming efforts needed by TCIO is significantly less than
that required by OCIO. Further, TCIO offers comparable or
better I/O performance as against OCIO.

V. EXPERIMENT

A. Testbed

We evaluate TCIO library on the production Lonestar
machine at TACC [23]. Lonestar is a 1,888-
each node features two 6-Core processors. Centos 5.5
installed on the computing nodes and these nodes
connected by Mellanox InfiniBand network in a fat
topology with a 40Gbit/sec point-to-point bandwidth. Each
node holds up to 24GB memory. The parallel file system
Lustre [24] is installed on this machine and provides

shows the contents of the level-1 and level-2 buffers after the application outputs the first elements of each array.

after the application outputs the second elements of each array. Step 5 shows the content of the

after the application outputs the third elements of each array. In step 6,the application outputs all the data in the level

Finally, all the data are transferred to a file.

-1 buffer with the
2 buffer and places the second

-1 buffer.

At the fourth step, process 1 attempts to output the third
Since these writes fall outside the first

1 buffer is aligned with, the library
1 buffer and moves these data blocks to the

-1 buffer with the
2 buffer and places the third

1 buffer. Process 2 also
memory arrays in its

At the sixth step, both the processes flush all the buffered
2 buffers.

comparing Figure 4 and Figure 2, it is clear that the
actual I/O operations adopted by TCIO and OCIO are different.
As we will show in the next section, the amount of

is significantly less than
that required by OCIO. Further, TCIO offers comparable or

on the production Lonestar
-node cluster and

Core processors. Centos 5.5 is
and these nodes are

connected by Mellanox InfiniBand network in a fat-tree
point bandwidth. Each

arallel file system
provides up to 1PB

storage capability. Lonestar is configured with 30
storage targets (OST). The stripe size is 1MB.
file is stored on a single OST. We use the default setting in the
following experiments. SGE is used to

We evaluate the library by means of
and a real parallel application. We compare
OCIO with regard to programming efforts and I/O performance
by using the benchmark. The application
the case where OCIO cannot be used, while TCIO
to boost application I/O performance
were conducted during the production mode, mean
applications coexist in the system. To minimize the noise
performance results, a minimum of three
for each experiment, and we present the average values.

B. Synthetic Benchmark

We create a benchmark to simulate the I/O acces
example application as shown in Fig
the special pattern --- small noncontiguous data blocks
accessed by parallel processes in an interleaving fashion
where collective I/O can optimize I/O performance over the
vanilla MPI-IO. As mentioned earlier, the main goal of our
benchmark experiments is to compare programming efforts and
IO performance by using TCIO and OCIO respectively. Hence,
in the rest of this subsection, we list the results achieved by
TCIO and OCIO. Before presenting the experiment
we list the configuration parameters
I. The following configuration parameters

NUMarray = 2

TYPEarray =i, d

LENarray = 3

SIZEaccess = 1

after the application outputs the first elements of each array. Step

shows the content of the level-1 and

level-1 buffers to level-2 buffers.

Lonestar is configured with 30 object
The stripe size is 1MB. By default, each

We use the default setting in the
SGE is used to provide batch services.

by means of a synthetic benchmark
e compare TCIO as against
efforts and I/O performance

application is used to illustrate
cannot be used, while TCIO can be used
I/O performance. All these experiments

production mode, meaning other
he system. To minimize the noise in the

formance results, a minimum of three runs were conducted
present the average values.

create a benchmark to simulate the I/O accesses of the
in Figure 2. The benchmark has

small noncontiguous data blocks
accessed by parallel processes in an interleaving fashion ---
where collective I/O can optimize I/O performance over the

IO. As mentioned earlier, the main goal of our
to compare programming efforts and

IO performance by using TCIO and OCIO respectively. Hence,
in the rest of this subsection, we list the results achieved by

Before presenting the experimental results,
parameters of the benchmark in Table

following configuration parameters are used:

TABLE I. CONFIGURATION PARAMETERS

Symbol Description

method
0: OCIO; 1: TCIO; 2 MPI-IO

NUMarray
The number of arrays within each process

TYPEarray

The data types of arrays separated by a comma. c: char; s:

short; i: integer; f: float; d: double

e.g. “i,d” means the first array is of integer type and the

second array is of double type

LENarray
The length of arrays

SIZEaccess

The number of array elements per I/O access. We can use it

to adjust the I/O access size. For example, if SIZEaccess

equals 4, the benchmark access four array elements for each

I/O call.

1) Programming Efforts

Freeing application developers from writing extra code is a
key motivation of this work. Before comparing TCIO and
OCIO implementations on performance, we list their respective
codes. Program 2 is the OCIO code and Program 3 is the TCIO
code.

Program 2 shows the implementation by using OCIO
library. First, each benchmark process has to create an
application level buffer to combine data, and then appends

segments of each array to the buffers in a round-robin fashion
through two for loops. Finally, all the array values are
combined within a single application level buffer. After that,
each benchmark process creates two derived data types to
describe the noncontiguous access patterns and passes such
information to library by setting out the view of the file. A
single collective write call is issued to output all the data in the
buffer. At last, release the occupied memory space for further
use. For simplicity, we just describe the buffer operations with
a single sentence in Program 2. In practice, however, creating
and maintaining these application level buffers requires
significant programming efforts by the application developers.

Program 3 presents the code of the implementation using
TCIO. Each benchmark process only needs to output the
elements of each array through two for loops in POSIX I/O
fashion. It first calculates the file offset of the data block, then
seeks the file handle to that position and then places the data
block there. Application developers do not have to manipulate
application level buffers, create derived data types or set out
file views. Applications can benefit from collective I/O
optimization by using fewer lines of code in a simpler way.

2) I/O Performance

a) Impact of the Number of Processes

In this subsection, we evaluate the performance of TCIO
against OCIO with different numbers of processes. Table II
shows the configurations of the benchmark. We vary the
number of processes from 64 to 1024. Each process holds two
in-memory arrays of integer and double types, respectively.
The length of each local array is 4M.

TABLE II. EXPERIMENT CONFIGURATION

Parameters

NUMarray TYPEarray LENarray SIZEaccess NUMproc

Value 2 i,d 4M 1 64~1024

The left subfigure of Figure 5 shows the write throughput
as a function of the number of processes. Collective I/O
improves parallel I/O performance by aggregating large
numbers of small and noncontiguous accesses into large fewer
ones. Hence, the improvement of collective I/O for large I/O

Program 3: Programming efforts by using TCIO

1. block_size ← (sizeof(int)+sizeof(double))*SIZEaccess

2. handle ←tcio_open(file_name, mode)

3. for each i ∈ [1,LENarray] increase SIZEaccess

a. pos ←my_rank*block_size

+i*block_size*num_procs

b. for each j ∈[1, NUMarray]

i. tcio_write_at(handle,pos,arrayj[i],

SIZEaccess, MPI_BYTE)

ii. pos ←pos +<type size of array i> *

SIZEaccess

4. tcio_close(handle)

Program 2: Programming efforts by using OCIO

1. Create an application level buffer

2. //Combine data in the buffer by two for loops

for each i ∈ [1,LENarray] increase SIZEaccess

 for each j ∈[1, NUMarray]

 append the [ith ~ i+SIZEaccess) elements

of array j to the end of the buffer

3. //Open file

MPI_File_open(MPI_COMM_WORLD, file_name,

mode, MPI_INFO_NULL, &handle)

4. //Set out file view

block_size ← (sizeof(int)+sizeof(double))* SIZEaccess

5. disp ← my_rank *block_size

6. MPI_Type_contiguous (block_size, MPI_BYTE,

&eType)

7. MPI_Type_commit(&eType)

8. MPI_Type_vector(LENarray/ SIZEarray, 1 , num_procs ,

eType, &fileType)

9. MPI_Type_commit(&fileType)

10. MPI_File_set_view(handle, disp, eType, fileType,

“native”, MPI_INFO_NULL)

11. MPI_File_write_all(handle, <address of the buffer>,

LENarray/SIZEaccess*block_size, MPI_BYTE, &status)

12. MPI_File_close(&handle)

13. Release the buffer.

Figure 5. I/O throughput of the synthetic benchmark with varying access sizes

accesses is not evident. In this set of experiments, we set the
access size to 1. From this figure, we observe that OCIO
delivers better performance at small scales (<=256). TCIO,
however, outperforms OCIO at large scale. OCIO exchanges
data among computing nodes in all-to-all fashion. Each process
receives data from all processes and then broadcast data to all
processes through non-blocking I/O. The number of network
connections increases quickly with the growth of computing
nodes. TCIO uses one-sided communication to transfer data in
end-to-end fashion. Each process sends or receives data from a
single process each time. Thus the number of connections
increases slower than that of OCIO. Moreover, OCIO performs
all the communication at the same time, which might cause
heavy traffic bursting in the network. TCIO, however, performs
each communication individually. Therefore, TCIO achieves
better writing performance as against OCIO at large scales
(>=512).

The right subfigure of Fig. 5 presents the read throughput
for the same set of experiments. In this figure, we can see that
TCIO is better than OCIO. Moreover, we can observe that the
gap between TCIO and OCIO is widened with the growth of
compute nodes.

b) Impact of File Size

In this set of experiments, we evaluate TCIO as against
OCIO with different file sizes. We use the same configuration
parameters listed in Table II except that we fix the number of
processes at 64 and vary the LENarray from 1M to 64M, leading
to the file size varies from 768MB to 48GB.

Figure 6 shows the write throughput of the benchmark with
different dataset sizes. The key observation of this figure is that
when the size of dataset is 48GB, the benchmark with OCIO
fails to work. If the size of the entire dataset is 48GB and the
number of process is 64, each process has to hold up to 0.75GB
of data. By using OCIO, these data are first combined and
cached in the application level buffers and then copied to the
temporary buffers of the library. Therefore, each process has to
provide 1.5GB (0.75*2) memory space for I/O operations. On
Lonestar, the memory space is not sufficient for the benchmark
to perform I/O operations with the code listed in Program 2. In
TCIO, the benchmark does not have to combine all the data
together in order to output them with a single call. Each

process just has one reusable level-1 buffer and the size of
which equals one segment size of the level-2 buffer. The size of
the level-2 buffer equals the size of the temporary buffer in
OCIO. Therefore, only 0.751GB(0.75GB+1MB) memory
space is requires. TCIO outperforms OCIO in terms of memory
utilization.

Figure 6. Write throughput

Figure 7. Read throughput

Fig. 7 shows the experimental results of read throughput for
the same set of experiments. As for reads, TCIO delivers better
performance than OCIO. Also, the benchmark fails to work

 0

 200

 400

 600

 800

 1000

 1200

64 128
256

512
1024

T
h

ro
u

g
h
p

u
t

(M
b

y
te

s
/s

e
c
)

Number of processes

Write throughput

TCIO OCIO

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

64 128
256

512
1024

T
h

ro
u
g

h
p

u
t

(M
b

y
te

s
/s

e
c
)

Number of processes

Read throughput

TCIO OCIO

 0

 100

 200

 300

 400

 500

 600

768M
B

3G
B

12G
B

48G
B

T
h
ro

u
g
h

p
u

t
(M

b
y
te

s
/s

e
c
)

File size

Write throughput

TCIO
OCIO

 0

 200

 400

 600

 800

 1000

768M
B

3G
B

12G
B

48G
B

T
h

ro
u

g
h

p
u
t

(M
b

y
te

s
/s

e
c
)

File size

Read throughput

TCIO
OCIO

with the code listed in Program 2 when the size of dataset is
48GB.

3) Summary of Benchmark Results

Table III summarizes the differences between
TCIO. OCIO requires applications to create an additional level
of buffers while TCIO does not. OCIO uses
mechanism, whereas TCIO exposes POSIX-like interfaces for
applications to perform I/O operations in a transparent manner.
The number of lines of code for I/O operations b
is more than that of TCIO. In OCIO, the total size of
application level buffers from different processes should be
large enough to hold all the output data, while the size of the
corresponding buffers in TCIO, the level-1 buffers, equals
segment size of the level-2 buffers. The memory utilization of
TCIO is more efficient than that of OCIO. Restricted by the file
view mechanism, OCIO is suitable for those applications with
easy-to-describe access patterns, while TCIO
library that can be used by a broad range of parallel
applications.

TABLE III. COMPARISION BETWEEN OCIO

Table Column Head

Original collective I/O Transparent collective I/O

Application-level

buffer

Yes

File view Yes

Lines of code Many

Memory

efficency
Poor

Restriction

access patterns that

can be easily

described by MPI

derived data types

Any POSIX

C. Cosmology Application

In this subsection, we evaluate TCIO by means of
cosmology simulation code called ART (Adaptive Refinement
Tree) [25]. ART is a cell-based AMR application
divides the whole 3D space computing volume in
cells, so-called root cells. Each root cell is a
computing unit. If higher spatial resolution is required, a
cell can be refined into eight finer cells. The finer cell
further refined and are organized in an octal tree. ART use
fully threaded tree (FTT) [26] to represent refinement cells and
their relationship. The structures of these trees
dynamically throughout the course of the computation,
causes these trees to have different structures and sizes.

In order to write the data into a file, ART also
3D computing volume to one-dimensional
When the mapping is done by allocating the cells in the order
of x, y, and z, each process would divide its cells within its
computing volume into multiple segments and place these
segments on disk in an interleaving fashion. Such I/O access
patterns can benefit from the use of collective I/O optimization.

Figure 8 shows the data layout of one FTT. I
described file data format [27]. Both the variable values and
tree structure information are recorded in the file. If one FTT

rogram 2 when the size of dataset is

the differences between OCIO and
s to create an additional level

uses a file view
like interfaces for

applications to perform I/O operations in a transparent manner.
for I/O operations by using OCIO

, the total size of the
application level buffers from different processes should be
large enough to hold all the output data, while the size of the

1 buffers, equals one
. The memory utilization of

. Restricted by the file
se applications with
TCIO is a generic

library that can be used by a broad range of parallel

 AND TCIO

Table Column Head

Transparent collective I/O

No

No

Few

High

POSIX-like access

patterns

by means of a real
(Adaptive Refinement

based AMR application, which
computing volume into uniform

cell is an individual
spatial resolution is required, a root

The finer cells can be
an octal tree. ART uses a

to represent refinement cells and
The structures of these trees change

dynamically throughout the course of the computation, which
causes these trees to have different structures and sizes.

, ART also must map the
dimensional on-disk blocks.

When the mapping is done by allocating the cells in the order
divide its cells within its

computing volume into multiple segments and place these
segments on disk in an interleaving fashion. Such I/O access
patterns can benefit from the use of collective I/O optimization.

Figure 8 shows the data layout of one FTT. It is a self-
. Both the variable values and

tree structure information are recorded in the file. If one FTT

holds two variables, the depth of the tree equals 6, and the
numbers of nodes of each level are {1,2,4,8,16,32}, one FTT
will consist of 129 arrays of different types and sizes.
these arrays are adjacent in the file,
combine these arrays together. OCIO requires
to explicitly manage the buffer. TCIO
performs the aggregation implicitly

Since these FTT differ in the number of cells they contain,
they represent different amount of computational work.
Processes will contain various num
maintain a reasonable load balance.
the lengths of the segments assigned to each process
the normal distribution and use the following parameters to
generate 1024 random numbers to represent the
these segments. These segments are in turn assigned to
processes in a round-robin fashion.

TABLE IV. SEGMENTS

Parameters

Distribution Mu

Value Normal 2048

Figure 8. Data layout of one FTT

a) Programming Efforts

In order to use OCIO, ART firs
the file. Since the lengths of these segments are different, the
application cannot use a single elementary data type
the data block of each segment. Moreover,
data structure, which is represented
different sizes and types. Even we can use derived data types
(e.g. MPI_Type_create_struct) to describe the structure of th
FTT, we still have to create an application level buffer to
combine these arrays together. Manipulating an application
level buffer to combine and buffer the
work, not to mention that these FTT instances are
sizes, and we have to create different
instances for different FTT. In short, it is hard to use OCIO for
the application, at least with the similar programming efforts by
using TCIO.

holds two variables, the depth of the tree equals 6, and the
rs of nodes of each level are {1,2,4,8,16,32}, one FTT

will consist of 129 arrays of different types and sizes. Since
these arrays are adjacent in the file, a buffer is needed to
combine these arrays together. OCIO requires the application

TCIO, on the other head,
 through its level-1 buffer.

ince these FTT differ in the number of cells they contain,
they represent different amount of computational work.
Processes will contain various numbers of FTT in order to

 In our tests, we assume that
assigned to each process follows

normal distribution and use the following parameters to
generate 1024 random numbers to represent the lengths of

These segments are in turn assigned to the

EGMENTS GENERATION

Parameters

Sigma Seed

128 5

ata layout of one FTT

first has to set out the view of
Since the lengths of these segments are different, the

e a single elementary data type to describe
Moreover, FTT is a complex
ed by many small arrays of

Even we can use derived data types
(e.g. MPI_Type_create_struct) to describe the structure of the
FTT, we still have to create an application level buffer to

Manipulating an application
these data is also an arduous

e FTT instances are of different
different derived data type

In short, it is hard to use OCIO for
the application, at least with the similar programming efforts by

As for TCIO, ART code does not have to inform the library
of the noncontiguous access pattern of the application via file
view by using derived data types. Also, the application does not
have to create application level buffers to combine data blocks.
The only thing that the application needs to do is to output each
piece of data individually and TCIO will handle collective I/O
operations transparently to the application.

b) I/O Performance

In this set of experiments, we evaluate the parallel I/O
performance of the ART code with TCIO as against vanilla
MPI-IO. Both allow applications to perform I/O operations
based on each piece of data individually except that the former
incorporates collective I/O optimization. In the experiments,
we let the simulation first dump the intermediate data and then
restart from this snapshot.

Figure 9 and 10 show the write and read throughputs of the
ART code by using TCIO as against vanilla MPI-IO with a
variety of scales. It is evident that TCIO is much better, up to
100X faster than the vanilla MPI-IO. When the number of
processes is equal to or larger than 512, ART with vanilla MPI-
IO takes more than 90 minutes to complete. That is why the
figures only present TCIO data when the number of processes
is equal or larger than 512.

Figure 9. Write throughout of ART code

Figure 10. Read throughput of ART code

Another observation is that both the write and read
throughputs of TCIO first increase with the increasing number
of processes and then drop slightly. In this set of experiments,

we test strong-scaling, meaning that the total number of root
cells is fixed and the size of entire dataset is the same. When
the computing scale is small, the aggregate I/O throughputs of
compute nodes are the performance bottleneck. With the
increasing number of processes, there will be more compute
nodes to perform I/O operations. Hence, both the write and
read throughputs grow with the increasing number of
processes. On Lonestar, the centralized parallel file system
Lustre is used to manage data. The number of I/O servers
determines the bandwidth of the file system. If data-outputting
rate overwhelms the bandwidth of the file system, application
I/O throughputs stop increasing. Even worse, the competition
among computing nodes will bring down the I/O performance.
Therefore, the I/O throughputs of TCIO stop increasing and
drop with the increasing of processes. Such a phenomenon
indicates that the I/O performance of parallel large-scale
applications subjects to the bandwidth of the underlying
centralized parallel file system.

D. Experiment Summary

In summary, our experimental results with the synthetic
benchmark and the cosmology application indicate that:

• TCIO can greatly reduce user’s programming efforts
for using collective I/O in their applications (see
Program 2 and Program 3). Moreover, the
applications with complex dynamic access patterns
like ART can benefit from collective I/O by using
TCIO.

• Experimental results indicate that TCIO outperforms
OCIO at large scales. A key reason is that TCIO
utilizes one-sided communication for data exchange
among processes, which can significantly reduce the
network traffic. This is essential for those large-scale
applications where the network bandwidth is the
performance bottleneck.

• TCIO uses less memory than OCIO, thereby being
appropriate for those memory-intensive applications.

VI. CONCLUSION

Collective I/O is a powerful technique for parallel
applications to improve I/O performance in the case that
applications perform small, noncontiguous I/O accesses in an
interleaving fashion. Existing collective I/O implementations
require application developers to explicitly describe the
noncontiguous access patterns through derived data types and
inform the library by setting out the file view. In the case of the
application having multiple data structures, each application
process must first combine all the data from different places
into a single application level buffer in order to perform I/O
operations by issuing a single call. All these require significant
programming efforts from application developers. In addition,
due to the limitation of derived data types, some applications
with complex dynamic access patterns may not be able to use
the existing collective I/O implementation.

In this paper, we have presented a user-level library,
namely TCIO to address the issues described above. TCIO
exposes POSIX-like interfaces for parallel applications to
conduct collective I/O optimization. Our case studies have

10
0

10
1

10
2

10
3

64 128
256

512
1024

T
h
ro

u
g

h
p

u
t

(M
b

y
te

s
/s

e
c
)

Number of processes

TCIO MPI-IO

10
1

10
2

10
3

10
4

64 128
256

512
1024

T
h

ro
u

g
h
p

u
t

(M
b
y
te

s
/s

e
c
)

Number of processes

TCIO MPI-IO

shown that the library can significantly reduce user’s
programming efforts. Moreover, it delivers better throughput as
against the OCIO at large scales.

ACKNOWLEDGMENT

This work is supported in part by National Science Foundation
grants OCI-0904670. This work used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is supported by
National Science Foundation grant number OCI-1053575.

REFERENCES

[1] P. Crandall, R. Aydt, A. Chien and D. Reed, "Input-Ouput

Characteristics of Scalable Parallel Applications," in Proceedings of

Supercomputing '95, 1995.

[2] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis and M.Best, "File-

Access Characteristics of Parallel Scientific Workloads," IEEE

Transactions on Parallel and Distributed Systems, vol. 7, pp. 1075-1089,

October 1996.

[3] E. Smirni, R, Aydt, A. Chien and D. Reed, "I/O Requirements of

Scientific Applications: An Evolutionary View," in Proceedings of the

Fifth IEEE International Symposium on High Performance Distributed

Computing, 1996, pp. 49-59.

[4] J. Lofstead, M. Polte, G. Gibson, S.A. Klasky, K. Schwan, R. Oldfield,

M. Wolf and Q. Liu, "Six Degrees of Scientific Data: Reading Patterns

for Extreme Scale Science IO," in Proceedings of the 20th international

ACM symposium on High-Performance Parallel and Distributed

Computing, San Jose, CA, June, 2011.

[5] Y. Cui, K.B. Olsen, T.H. Jordan, K. Lee, J. Zhou, P. Small, D. Roten, G.

Ely, D.K. Panda, A. Chourasia, J. Levesque, S.M. Day and P. Maechling,

"Scalable Earthquake Simulation on Petascale Supercomputers," in

Proceedings of SC '10, New Orleans, Louisiana, USA, 2010.

[6] R. Sankaran, E. Hawkes, J. Chen, T. Lu, and C. Law, "Direct Numerical

Simulations of Turbulent Lean Premixed Combustion," Journal of

Physics: conference series, vol. 46, pp. 38–42, 2006.

[7] R.Thakur, W.Gropp and E.Lusk, "Data Sieving and Collective I/O in

ROMIO," in Proc. of the 7th Symposium on the Frontiers of Massively

parallel Computation, 1999, pp. 182-189.

[8] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham and R.

Ross, "Understanding and improving computational science storage

access through continuous characterization," Mass Storage Systems and

Technologies, IEEE / NASA Goddard Conference on, vol. 0, pp. 1-14,

2011.

[9] M. Zingale. FLASH I/O Benchmark Routine -- Parallel HDF 5. [Online].

http://www.ucolick.org/~zingale/flash_benchmark_io/

[10] W. Loewe, R. Klundt. IOR HPC Benchmark. [Online].

http://sourceforge.net/projects/ior-sio/

[11] The Los Alamos National Lab MPI-IO Test. [Online].

http://public.lanl.gov/jnunez/benchmarks/mpiiotest.htm

[12] ROMIO: A High-Performance, Portable MPI-IO Implementation.

[Online]. http://www.mcs.anl.gov/research/projects/romio/

[13] G. Memik, M. T. Kandemir, W. Liao, and A. Choudhary,

"Multicollective I/O: A technique for exploiting inter-file access

patterns," Trans. Storage, pp. 349-369, Aug. 2006.

[14] V. Venkatesan, M. Chaarawi, E. Gabriel, and T. Hoefler, "Design and

Evaluation of Nonblocking Collective I/O Operations," in Recent

Advances in the Message Passing Inerface (EuroMPI'10), vol. 6960,

Santorini, Greece, 2011, pp. 90-98.

[15] W. Yu, J. Vetter, "ParColl: Partitioned Collective I/O on the Cray XT,"

in ICPP '08, Portland, OR, 2008, pp. 562-569.

[16] J. Blas, F. Isail, D. Singh, and J. Carretero, "View-based collective I/O

for MPI-IO," in Cluster Computing and the Grid, 2008. CCGRID '08,

2008, pp. 409-416.

[17] Y. Chen, X. Sun, R. Thakur, P. Roth, W. Gropp, "LACIO: A New

Collective I/O strategy for Parallel I/O Systems," in the 25th IEEE Int'l

Parallel and Distributed Processing Sympsium(IPDPS2011), 2011.

[18] X. Zhang, S. Jiang, and D. Kei, "Making Resonance a Common Case: A

High-Performance Implementation of Collective I/O on Parallel FIle

Systems," in Parallel & Distributed Processing IPDPS '09, 2009, pp. 1-

12.

[19] W. Liao, and A. Choudhary, "Dynamically Adapting File Domain

Partitioning Methods for Collective I/O Based on Underlying Parallel

File System Locking Protocolssed ," in High Performance Computing,

Networking, Storage and Analysis, SC '08, Austin, TX, 2008.

[20] CRAY. [Online]. https://fs.hlrs.de/projects/craydoc/docs/books/S-2490-

40/html-S-2490-40/chapter-g1s9a5n5-oswald-benchmarkresults.html

[21] NERSC. [Online]. http://www.nersc.gov/users/data-and-

networking/optimizing-io-performance-for-lustre/

[22] K. Coloma, A, Ching, A. Choudhary, W.Liao, R. Ross, R. Thakur and

L.Ward, "A New Flexible MPI Collective I/O Implemenation," in n

Proceedings of the IEEE Conference on Cluster Computing (Cluster

2006) , Barcelona, Spain.

[23] Extreme Science and Engineering Discovery Environment. [Online].

https://www.xsede.org/

[24] Oracle. Lustre File System. [Online]. http://wiki.lustre.org

[25] A. V. Kravtsov, A. A. Klypin and A. M. Khokhlov, "Adaptive

Refinement Tree: A new High-resolution N-body code for Cosmological

Simulations," in Astrophyc. J. Suppl, 1997, pp. 73-94.

[26] A. M. Khokhlov, "Fully Threaded Tree Algorithms for Adaptive

Refinement Fluid Dynamics Simulations," Journal of Computational

Physics, 1998.

[27] Y. Yu, D.H. Rudd, Z. lan, N.Y. Gnedin, A. Kravtsov and J. Wu, ,

"Improving Parallel IO Performance of Cell-based AMR Cosmology

Applications ," in IPDPS '12, 2012.

.

